OnabotulinumtoxinA Reduces Temporal Pain Processing at Spinal Level in Patients with Lower Limb Spasticity

Roberto De Icco, Armando Perrotta, Eliana Berra, Marta Allena, Enrico Alfonsi, Stefano Tamburin, Mariano Serrao, Giorgio Sandrini, Cristina Tassorelli

Research output: Contribution to journalArticlepeer-review


Spasticity is a muscle tone disorder associated with different neurological conditions. Spasticity could be associated with pain, high disability, poor functional recovery, and reduced quality of life. Botulinum neurotoxin type A (BoNT-A) is considered a first-line treatment for spasticity and, more recently, it also represents a therapeutic option for various chronic pain conditions. In this open label study, we aim to evaluate the effect of the BoNT-A on the spinal nociception in patients affected by spasticity of the lower limbs with associated pain with predominantly neuropathic features. Ten patients with stroke, 10 with multiple sclerosis and 5 with spinal cord injury were enrolled in the study. They were tested with clinical scales (neuropathic pain scale inventory (NPSI), numerical rating scale (NRS), modified Ashworth scale (MAS) and with the nociceptive withdrawal reflex at lower limbs to explore the spinal temporal summation threshold at baseline and 30 day after BoNT-A injection. OnabotulinumtoxinA (50 to 200 units per site) was injected in the lower limb muscles according to the distribution of spasticity. No significant differences were found at baseline for neurophysiological features across groups. After the BoNT-A injection, we recorded a significant reduction in MAS and NRS scores. Regarding the neurophysiological parameters, we described a significant increase in the temporal summation threshold after the BoNT-A injection. Our data supports the hypothesis that peripherally injected OnabotulinumtoxinA modulates the excitability of spinal cord nociceptive pathways. This activity may take place irrespective of the effect of the drug on spasticity.

Original languageEnglish
Pages (from-to)429-38
Number of pages10
Issue number2
Publication statusPublished - 2019


Dive into the research topics of 'OnabotulinumtoxinA Reduces Temporal Pain Processing at Spinal Level in Patients with Lower Limb Spasticity'. Together they form a unique fingerprint.

Cite this