Online estimation of continuous gait phase for robotic transtibial prostheses based on adaptive oscillators

Dongfang Xu, Simona Crea, Nicola Vitiello, Qining Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Continuous gait phase plays an important role in wearable robot control. This study focuses on the online estimation of continuous gait phase based on robotic transtibial prosthesis signals. First, we adopt the prosthetic foot deformation information to detect the heel strike as the start timing (reset 0 rad) of one gait cycle. Then we conduct the gait phase estimation based on adaptive oscillators using the prosthetic shank angle signal as input. Three transtibial amputees were recruited in this study and they walked on the treadmill at different speeds (slow, normal and fast) and on different ramps (10°, 5°, 0°, -5° and -10°) in the experiment. The root-meansquare error between online estimation result and ground truth gait phase is calculated. The maximum and minimum errors are 0.147 rad and 0.058 rad, and the corresponding ratios in one gait cycle are 2.34% and 0.92%. This study achieves good performance and provides an effective method to estimate the continuous gait phase, which will instruct robotic transtibial prosthesis control.

Original languageEnglish
Title of host publication2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1890-1895
Number of pages6
ISBN (Electronic)9781728167947
DOIs
Publication statusPublished - Jul 2020
Event2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020 - Boston, United States
Duration: Jul 6 2020Jul 9 2020

Publication series

NameIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
Volume2020-July

Conference

Conference2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020
CountryUnited States
CityBoston
Period7/6/207/9/20

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Computer Science Applications
  • Software

Fingerprint Dive into the research topics of 'Online estimation of continuous gait phase for robotic transtibial prostheses based on adaptive oscillators'. Together they form a unique fingerprint.

Cite this