Opportunities and Challenges for Machine Learning in Rare Diseases

Sergio Decherchi, Elena Pedrini, Marina Mordenti, Andrea Cavalli, Luca Sangiorgi

Research output: Contribution to journalReview articlepeer-review

Abstract

Rare diseases (RDs) are complicated health conditions that are difficult to be managed at several levels. The scarcity of available data chiefly determines an intricate scenario even for experts and specialized clinicians, which in turn leads to the so called "diagnostic odyssey" for the patient. This situation calls for innovative solutions to support the decision process via quantitative and automated tools. Machine learning brings to the stage a wealth of powerful inference methods; however, matching the health conditions with advanced statistical techniques raises methodological, technological, and even ethical issues. In this contribution, we critically point to the specificities of the dialog of rare diseases with machine learning techniques concentrating on the key steps and challenges that may hamper or create actionable knowledge and value for the patient together with some on-field methodological suggestions and considerations.

Original languageEnglish
Pages (from-to)1-7
Number of pages7
JournalFrontiers in Medicine
Volume8
DOIs
Publication statusPublished - Oct 2021

Keywords

  • clinical decision support system
  • disease registry
  • machine learning
  • open data
  • rare disease

Fingerprint

Dive into the research topics of 'Opportunities and Challenges for Machine Learning in Rare Diseases'. Together they form a unique fingerprint.

Cite this