Optimization of a wga-free molecular tagging-based ngs protocol for ctcs mutational profiling

Giuseppa De Luca, Barbara Cardinali, Lucia Del Mastro, Sonia Lastraioli, Franca Carli, Manlio Ferrarini, George A. Calin, Anna Garuti, Carlotta Mazzitelli, Simona Zupo, Mariella Dono

Research output: Contribution to journalArticlepeer-review

Abstract

Molecular characterization of Circulating Tumor Cells (CTCs) is still challenging, despite attempts to minimize the drawbacks of Whole Genome Amplification (WGA). In this paper, we propose a Next-Generation Sequencing (NGS) optimized protocol based on molecular tagging technology, in order to detect CTCs mutations while skipping the WGA step. MDA-MB-231 and MCF-7 cell lines, as well as leukocytes, were sorted into pools (2–5 cells) using a DEPArray™ system and were employed to set up the overall NGS procedure. A substantial reduction of reagent volume for the preparation of libraries was performed, in order to fit the limited DNA templates directly derived from cell lysates. Known variants in TP53, KRAS, and PIK3CA genes were detected in almost all the cell line pools (35/37 pools, 94.6%). No additional alterations, other than those which were expected, were found in all tested pools and no mutations were detected in leukocytes. The translational value of the optimized NGS workflow is confirmed by sequencing CTCs pools isolated from eight breast cancer patients and through the successful detection of variants. In conclusion, this study shows that the proposed NGS molecular tagging approach is technically feasible and, compared to traditional NGS approaches, has the advantage of filtering out the artifacts generated during library amplification, allowing for the reliable detection of mutations and, thus, making it highly promising for clinical use.

Original languageEnglish
Article number4364
Pages (from-to)1-19
Number of pages19
JournalInternational Journal of Molecular Sciences
Volume21
Issue number12
DOIs
Publication statusPublished - Jun 2020

Keywords

  • Biomarkers
  • Breast cancer
  • Circulating Tumor Cells
  • Liquid biopsy
  • Molecular tagging
  • Next-Generation Sequencing
  • Precision medicine
  • Single-cell genomics
  • Whole Genome Amplification-free

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Optimization of a wga-free molecular tagging-based ngs protocol for ctcs mutational profiling'. Together they form a unique fingerprint.

Cite this