Organization and hierarchy of the human functional brain network lead to a chain-like core

Rossana Mastrandrea, Andrea Gabrielli, Fabrizio Piras, Gianfranco Spalletta, Guido Caldarelli, Tommaso Gili

Research output: Contribution to journalArticlepeer-review

Abstract

The brain is a paradigmatic example of a complex system: its functionality emerges as a global property of local mesoscopic and microscopic interactions. Complex network theory allows to elicit the functional architecture of the brain in terms of links (correlations) between nodes (grey matter regions) and to extract information out of the noise. Here we present the analysis of functional magnetic resonance imaging data from forty healthy humans at rest for the investigation of the basal scaffold of the functional brain network organization. We show how brain regions tend to coordinate by forming a highly hierarchical chain-like structure of homogeneously clustered anatomical areas. A maximum spanning tree approach revealed the centrality of the occipital cortex and the peculiar aggregation of cerebellar regions to form a closed core. We also report the hierarchy of network segregation and the level of clusters integration as a function of the connectivity strength between brain regions.

Original languageEnglish
Article number4888
JournalScientific Reports
Volume7
Issue number1
DOIs
Publication statusPublished - Dec 1 2017

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Organization and hierarchy of the human functional brain network lead to a chain-like core'. Together they form a unique fingerprint.

Cite this