Osteoarthritic Milieu Affects Adipose-Derived Mesenchymal Stromal Cells

Research output: Contribution to journalArticle

Abstract

The objective of this study was to define the effects of osteoarthritic (OA) milieu on good manufactured practice-adipose-derived mesenchymal stromal cells (GMP-ASC) that are commonly utilized in cell therapies. Two different OA milieu: OA synovial fluid (SF) and OA-conditioned medium (CM) from synoviocytes were used to treat GMP-ASC both in normoxia or hypoxia. GMP-ASC were tested for cell migration, proliferation, cytokine receptors expression (CXCR1, CXCR2, CXCR3, CXCR4, CXCR7, CCR1, CCR2, CCR3, CCR5, IL6R), and cytokines (CXCL8/IL8, CXCL10/IP10, CXCL12/SDF-1, CCL2/MCP1, CCL3/MIP1α, CCL4/MIP1β, CCL5/RANTES, IL6) release. Healthy SF was used as controls. We demonstrated that GMP-ASC show an increase in proliferation, migration, and modulation of CXCR1, CXCR3, CCR1, and CCR5 receptors in hypoxic condition. Moreover, GMP-ASC migration increased 15-fold when treated either with OA-SF or OA-CM compared with healthy SF both in normoxia and hypoxia. GMP-ASC treated in both OA milieu showed an increase in CXCR3, CCR3, and IL6R and a decrease in CCR1 and CCR2 receptors. In OA-SF, we detected higher amount of CXCL10/IP10 than in OA-CM, while CCL2/MCP1 and CCL4/MIP1β were higher in OA-CM compared with OA-SF. CXCL10/IP10 was the only chemokine of the OA milieu, which was down-modulated after treatment with GMP-ASC. In conclusion, we demonstrated specific effects of OA milieu on both GMP-ASC proliferation, migration, and cytokine receptor expression that were strictly dependent on the inflammatory and hypoxic environment. The use of characterized OA milieu is crucial to define the therapeutic effect of GMP-ASC and indicates that CXCL10/IP10-CXCR3 axis is partially involved in the GMP-ASC effect on synovial macrophages. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res.

Original languageEnglish
JournalJournal of Orthopaedic Research
DOIs
Publication statusE-pub ahead of print - Aug 19 2019

Fingerprint

Mesenchymal Stromal Cells
Synovial Fluid
Conditioned Culture Medium
CCR1 Receptors
Cell Movement
Cytokine Receptors
Interleukin-8A Receptors
CXCR3 Receptors
CCR2 Receptors
Cell Proliferation
CCR5 Receptors
Chemokine CCL5
Therapeutic Uses
Cell- and Tissue-Based Therapy
Interleukin-8
Chemokines
Orthopedics
Interleukin-6
Macrophages
Cytokines

Keywords

  • adipose-derived mesenchymal stromal cells
  • cytokine
  • hypoxia
  • migration
  • synovial fluid

Cite this

@article{adff61a566e04cd2b187ed92040a3151,
title = "Osteoarthritic Milieu Affects Adipose-Derived Mesenchymal Stromal Cells",
abstract = "The objective of this study was to define the effects of osteoarthritic (OA) milieu on good manufactured practice-adipose-derived mesenchymal stromal cells (GMP-ASC) that are commonly utilized in cell therapies. Two different OA milieu: OA synovial fluid (SF) and OA-conditioned medium (CM) from synoviocytes were used to treat GMP-ASC both in normoxia or hypoxia. GMP-ASC were tested for cell migration, proliferation, cytokine receptors expression (CXCR1, CXCR2, CXCR3, CXCR4, CXCR7, CCR1, CCR2, CCR3, CCR5, IL6R), and cytokines (CXCL8/IL8, CXCL10/IP10, CXCL12/SDF-1, CCL2/MCP1, CCL3/MIP1α, CCL4/MIP1β, CCL5/RANTES, IL6) release. Healthy SF was used as controls. We demonstrated that GMP-ASC show an increase in proliferation, migration, and modulation of CXCR1, CXCR3, CCR1, and CCR5 receptors in hypoxic condition. Moreover, GMP-ASC migration increased 15-fold when treated either with OA-SF or OA-CM compared with healthy SF both in normoxia and hypoxia. GMP-ASC treated in both OA milieu showed an increase in CXCR3, CCR3, and IL6R and a decrease in CCR1 and CCR2 receptors. In OA-SF, we detected higher amount of CXCL10/IP10 than in OA-CM, while CCL2/MCP1 and CCL4/MIP1β were higher in OA-CM compared with OA-SF. CXCL10/IP10 was the only chemokine of the OA milieu, which was down-modulated after treatment with GMP-ASC. In conclusion, we demonstrated specific effects of OA milieu on both GMP-ASC proliferation, migration, and cytokine receptor expression that were strictly dependent on the inflammatory and hypoxic environment. The use of characterized OA milieu is crucial to define the therapeutic effect of GMP-ASC and indicates that CXCL10/IP10-CXCR3 axis is partially involved in the GMP-ASC effect on synovial macrophages. {\circledC} 2019 The Authors. Journal of Orthopaedic Research{\circledR} published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res.",
keywords = "adipose-derived mesenchymal stromal cells, cytokine, hypoxia, migration, synovial fluid",
author = "Cristina Manferdini and Francesca Paolella and Elena Gabusi and Luca Cattini and Markus Rojewski and Hubert Schrezenmeier and Olga Addimanda and Riccardo Meliconi and Gina Lisignoli",
note = "{\circledC} 2019 The Authors. Journal of Orthopaedic Research{\circledR} published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.",
year = "2019",
month = "8",
day = "19",
doi = "10.1002/jor.24446",
language = "English",
journal = "Journal of Orthopaedic Research",
issn = "0736-0266",
publisher = "John Wiley and Sons Inc.",

}

TY - JOUR

T1 - Osteoarthritic Milieu Affects Adipose-Derived Mesenchymal Stromal Cells

AU - Manferdini, Cristina

AU - Paolella, Francesca

AU - Gabusi, Elena

AU - Cattini, Luca

AU - Rojewski, Markus

AU - Schrezenmeier, Hubert

AU - Addimanda, Olga

AU - Meliconi, Riccardo

AU - Lisignoli, Gina

N1 - © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

PY - 2019/8/19

Y1 - 2019/8/19

N2 - The objective of this study was to define the effects of osteoarthritic (OA) milieu on good manufactured practice-adipose-derived mesenchymal stromal cells (GMP-ASC) that are commonly utilized in cell therapies. Two different OA milieu: OA synovial fluid (SF) and OA-conditioned medium (CM) from synoviocytes were used to treat GMP-ASC both in normoxia or hypoxia. GMP-ASC were tested for cell migration, proliferation, cytokine receptors expression (CXCR1, CXCR2, CXCR3, CXCR4, CXCR7, CCR1, CCR2, CCR3, CCR5, IL6R), and cytokines (CXCL8/IL8, CXCL10/IP10, CXCL12/SDF-1, CCL2/MCP1, CCL3/MIP1α, CCL4/MIP1β, CCL5/RANTES, IL6) release. Healthy SF was used as controls. We demonstrated that GMP-ASC show an increase in proliferation, migration, and modulation of CXCR1, CXCR3, CCR1, and CCR5 receptors in hypoxic condition. Moreover, GMP-ASC migration increased 15-fold when treated either with OA-SF or OA-CM compared with healthy SF both in normoxia and hypoxia. GMP-ASC treated in both OA milieu showed an increase in CXCR3, CCR3, and IL6R and a decrease in CCR1 and CCR2 receptors. In OA-SF, we detected higher amount of CXCL10/IP10 than in OA-CM, while CCL2/MCP1 and CCL4/MIP1β were higher in OA-CM compared with OA-SF. CXCL10/IP10 was the only chemokine of the OA milieu, which was down-modulated after treatment with GMP-ASC. In conclusion, we demonstrated specific effects of OA milieu on both GMP-ASC proliferation, migration, and cytokine receptor expression that were strictly dependent on the inflammatory and hypoxic environment. The use of characterized OA milieu is crucial to define the therapeutic effect of GMP-ASC and indicates that CXCL10/IP10-CXCR3 axis is partially involved in the GMP-ASC effect on synovial macrophages. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res.

AB - The objective of this study was to define the effects of osteoarthritic (OA) milieu on good manufactured practice-adipose-derived mesenchymal stromal cells (GMP-ASC) that are commonly utilized in cell therapies. Two different OA milieu: OA synovial fluid (SF) and OA-conditioned medium (CM) from synoviocytes were used to treat GMP-ASC both in normoxia or hypoxia. GMP-ASC were tested for cell migration, proliferation, cytokine receptors expression (CXCR1, CXCR2, CXCR3, CXCR4, CXCR7, CCR1, CCR2, CCR3, CCR5, IL6R), and cytokines (CXCL8/IL8, CXCL10/IP10, CXCL12/SDF-1, CCL2/MCP1, CCL3/MIP1α, CCL4/MIP1β, CCL5/RANTES, IL6) release. Healthy SF was used as controls. We demonstrated that GMP-ASC show an increase in proliferation, migration, and modulation of CXCR1, CXCR3, CCR1, and CCR5 receptors in hypoxic condition. Moreover, GMP-ASC migration increased 15-fold when treated either with OA-SF or OA-CM compared with healthy SF both in normoxia and hypoxia. GMP-ASC treated in both OA milieu showed an increase in CXCR3, CCR3, and IL6R and a decrease in CCR1 and CCR2 receptors. In OA-SF, we detected higher amount of CXCL10/IP10 than in OA-CM, while CCL2/MCP1 and CCL4/MIP1β were higher in OA-CM compared with OA-SF. CXCL10/IP10 was the only chemokine of the OA milieu, which was down-modulated after treatment with GMP-ASC. In conclusion, we demonstrated specific effects of OA milieu on both GMP-ASC proliferation, migration, and cytokine receptor expression that were strictly dependent on the inflammatory and hypoxic environment. The use of characterized OA milieu is crucial to define the therapeutic effect of GMP-ASC and indicates that CXCL10/IP10-CXCR3 axis is partially involved in the GMP-ASC effect on synovial macrophages. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res.

KW - adipose-derived mesenchymal stromal cells

KW - cytokine

KW - hypoxia

KW - migration

KW - synovial fluid

U2 - 10.1002/jor.24446

DO - 10.1002/jor.24446

M3 - Article

C2 - 31424111

JO - Journal of Orthopaedic Research

JF - Journal of Orthopaedic Research

SN - 0736-0266

ER -