OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection

Silvia Piconese, Barbara Valzasina, Mario P. Colombo

Research output: Contribution to journalArticlepeer-review

Abstract

Regulatory T (T reg) cells are the major obstacle to cancer immunotherapy, and their depletion promptly induces conversion of peripheral precursors into T reg cells. We show that T reg cells can be functionally inactivated by OX40 triggering. In tumors, the vast majority of CD4+ T cells are Foxp3+ and OX40bright. However, intratumor injection of the agonist anti-OX40 monoclonal antibody (mAb) OX86, but not anti-CD25 mAb, induces tumor rejection in 80% of mice, an effect that is abrogated by CD8 depletion. Upon intratumor OX40 triggering, increased numbers of infiltrating dendritic cells (DCs) migrate to draining lymph nodes and generate a new wave of tumor-specific cytotoxic T lymphocytes, as detected by tetramer and CD44 staining of node CD8+ T lymphocytes. Tumor-bearing Rag1-knockout (KO) mice reconstituted with OX40-deficient T reg cells and wild-type (WT) effector T cells, or the reciprocal combination, showed that both T reg and effector T cells must be triggered via OX40 for the tumor to be rejected. Accordingly, WT but not OX40-KO mice receiving intratumor coinjection of OX86 and ovalbumin protein were able to revert tumor-induced tolerization of adoptively transferred OX40-competent OTII T lymphocytes. In conclusion, OX40-mediated inactivation of T reg cell function unleashes nearby DCs, allowing them to induce an adaptive immune response. In addition, the known OX40-dependent delivery of fitness signals to activated T cells is boosted by concurrent T reg cell inhibition. OX40 triggering thus has multiple effects that converge to mediate tumor rejection. JEM

Original languageEnglish
Pages (from-to)825-839
Number of pages15
JournalJournal of Experimental Medicine
Volume205
Issue number4
DOIs
Publication statusPublished - Apr 14 2008

ASJC Scopus subject areas

  • Immunology

Fingerprint Dive into the research topics of 'OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection'. Together they form a unique fingerprint.

Cite this