Abstract
Background Revascularization appears to be beneficial only in patients with high levels of ischemia. This study examined the utility of gas analysis during the recovery phase of cardiopulmonary exercise testing (CPET) in predicting coronary artery disease (CAD) severity and prognosis. Methods 40 Caucasian patients (21.2% females), mean age 63.5 ± 7.6 with significant coronary artery lesions (≥ 50%) were studied. Within two months of coronary angiography, CPET on a treadmill (TM) and recumbent ergometer (RE) were performed on two visits 2–4 days apart; subjects were subsequently followed 32 ± 10 months. Myocardial wall motion was recorded by echocardiography at rest and peak exercise. Ischemia was quantified by the wall motion score index (WMSI). Results Mean ejection fraction was 56.7 ± 9.6%. Patients with 1–2 stenotic coronary arteries (SCA) showed a poorer CPET response during the recovery phase than patients with 3-SCA. ROC analysis revealed the change of carbon-dioxide output (∆ VCO2) recovery/peak (area under ROC curve 0.77, p = 0.02, Sn = 87.5%, Sp = 70.4%) and oxygen uptake (∆ VO2) recovery/peak during TM CPET (area under ROC curve 0.76, p = 0.03, Sn 75.0%, Sp 77.8%) were significant in distinguishing between 1-2-SCA and 3-SCA. The same variables predicted ΔWMSI peak/rest on univariate analysis (p < 0.05). Multivariate Cox analysis revealed a high predictive value of ∆ VO2 recovery/peak obtained during TM CPET for composite endpoint of cumulative cardiac events (HR = 1.27, CI = 1.07–1.51, p = 0.008). Conclusions The current study suggests CPET parameters in recovery hold predictive value for CAD severity and prognosis. TM testing seems to be a better approach in the assessment of CAD severity and prognosis.
Original language | English |
---|---|
Pages (from-to) | 39-45 |
Number of pages | 7 |
Journal | International Journal of Cardiology |
Volume | 248 |
DOIs | |
Publication status | Published - Dec 1 2017 |
Fingerprint
Keywords
- Carbon-dioxide
- Cardiopulmonary exercise test
- Coronary artery disease
- Oxygen uptake
- Recovery
ASJC Scopus subject areas
- Cardiology and Cardiovascular Medicine
Cite this
Oxygen consumption and carbon-dioxide recovery kinetics in the prediction of coronary artery disease severity and outcome. / Popovic, Dejana; Martic, Dejana; Djordjevic, Tea; Pesic, Vesna; Guazzi, Marco; Myers, Jonathan; Mohebi, Reza; Arena, Ross.
In: International Journal of Cardiology, Vol. 248, 01.12.2017, p. 39-45.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Oxygen consumption and carbon-dioxide recovery kinetics in the prediction of coronary artery disease severity and outcome
AU - Popovic, Dejana
AU - Martic, Dejana
AU - Djordjevic, Tea
AU - Pesic, Vesna
AU - Guazzi, Marco
AU - Myers, Jonathan
AU - Mohebi, Reza
AU - Arena, Ross
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Background Revascularization appears to be beneficial only in patients with high levels of ischemia. This study examined the utility of gas analysis during the recovery phase of cardiopulmonary exercise testing (CPET) in predicting coronary artery disease (CAD) severity and prognosis. Methods 40 Caucasian patients (21.2% females), mean age 63.5 ± 7.6 with significant coronary artery lesions (≥ 50%) were studied. Within two months of coronary angiography, CPET on a treadmill (TM) and recumbent ergometer (RE) were performed on two visits 2–4 days apart; subjects were subsequently followed 32 ± 10 months. Myocardial wall motion was recorded by echocardiography at rest and peak exercise. Ischemia was quantified by the wall motion score index (WMSI). Results Mean ejection fraction was 56.7 ± 9.6%. Patients with 1–2 stenotic coronary arteries (SCA) showed a poorer CPET response during the recovery phase than patients with 3-SCA. ROC analysis revealed the change of carbon-dioxide output (∆ VCO2) recovery/peak (area under ROC curve 0.77, p = 0.02, Sn = 87.5%, Sp = 70.4%) and oxygen uptake (∆ VO2) recovery/peak during TM CPET (area under ROC curve 0.76, p = 0.03, Sn 75.0%, Sp 77.8%) were significant in distinguishing between 1-2-SCA and 3-SCA. The same variables predicted ΔWMSI peak/rest on univariate analysis (p < 0.05). Multivariate Cox analysis revealed a high predictive value of ∆ VO2 recovery/peak obtained during TM CPET for composite endpoint of cumulative cardiac events (HR = 1.27, CI = 1.07–1.51, p = 0.008). Conclusions The current study suggests CPET parameters in recovery hold predictive value for CAD severity and prognosis. TM testing seems to be a better approach in the assessment of CAD severity and prognosis.
AB - Background Revascularization appears to be beneficial only in patients with high levels of ischemia. This study examined the utility of gas analysis during the recovery phase of cardiopulmonary exercise testing (CPET) in predicting coronary artery disease (CAD) severity and prognosis. Methods 40 Caucasian patients (21.2% females), mean age 63.5 ± 7.6 with significant coronary artery lesions (≥ 50%) were studied. Within two months of coronary angiography, CPET on a treadmill (TM) and recumbent ergometer (RE) were performed on two visits 2–4 days apart; subjects were subsequently followed 32 ± 10 months. Myocardial wall motion was recorded by echocardiography at rest and peak exercise. Ischemia was quantified by the wall motion score index (WMSI). Results Mean ejection fraction was 56.7 ± 9.6%. Patients with 1–2 stenotic coronary arteries (SCA) showed a poorer CPET response during the recovery phase than patients with 3-SCA. ROC analysis revealed the change of carbon-dioxide output (∆ VCO2) recovery/peak (area under ROC curve 0.77, p = 0.02, Sn = 87.5%, Sp = 70.4%) and oxygen uptake (∆ VO2) recovery/peak during TM CPET (area under ROC curve 0.76, p = 0.03, Sn 75.0%, Sp 77.8%) were significant in distinguishing between 1-2-SCA and 3-SCA. The same variables predicted ΔWMSI peak/rest on univariate analysis (p < 0.05). Multivariate Cox analysis revealed a high predictive value of ∆ VO2 recovery/peak obtained during TM CPET for composite endpoint of cumulative cardiac events (HR = 1.27, CI = 1.07–1.51, p = 0.008). Conclusions The current study suggests CPET parameters in recovery hold predictive value for CAD severity and prognosis. TM testing seems to be a better approach in the assessment of CAD severity and prognosis.
KW - Carbon-dioxide
KW - Cardiopulmonary exercise test
KW - Coronary artery disease
KW - Oxygen uptake
KW - Recovery
UR - http://www.scopus.com/inward/record.url?scp=85021854467&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85021854467&partnerID=8YFLogxK
U2 - 10.1016/j.ijcard.2017.06.107
DO - 10.1016/j.ijcard.2017.06.107
M3 - Article
AN - SCOPUS:85021854467
VL - 248
SP - 39
EP - 45
JO - International Journal of Cardiology
JF - International Journal of Cardiology
SN - 0167-5273
ER -