P2X7 activation enhances skeletal muscle metabolism and regeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis

Paola Fabbrizio, Savina Apolloni, Andrea Bianchi, Illari Salvatori, Cristiana Valle, Chiara Lanzuolo, Caterina Bendotti, Giovanni Nardo, Cinzia Volonté

Research output: Contribution to journalArticle

Abstract

Muscle weakness plays an important role in neuromuscular disorders comprising amyotrophic lateral sclerosis (ALS). However, it is not established whether muscle denervation originates from the motor neurons, the muscles or more likely both. Previous studies have shown that the expression of the SOD1G93A mutation in skeletal muscles causes denervation of the neuromuscular junctions, inability to regenerate and consequent atrophy, all clear symptoms of ALS. In this work, we used SOD1G93A mice, a model that best mimics some pathological features of both familial and sporadic ALS, and we investigated some biological effects induced by the activation of the P2X7 receptor in the skeletal muscles. The P2X7, belonging to the ionotropic family of purinergic receptors for extracellular ATP, is abundantly expressed in the healthy skeletal muscles, where it controls cell duplication, differentiation, regeneration or death. In particular, we evaluated whether an in vivo treatment in SOD1G93A mice with the P2X7 specific agonist 2′(3′)-O-(4-Benzoylbenzoyl) adenosine5′-triphosphate (BzATP) just before the onset of a pathological neuromuscular phenotype could exert beneficial effects in the skeletal muscles. Our findings indicate that stimulation of P2X7 improves the innervation and metabolism of myofibers, moreover elicits the proliferation/differentiation of satellite cells, thus preventing the denervation atrophy of skeletal muscles in SOD1G93A mice. Overall, this study suggests that a P2X7-targeted and site-specific modulation might be a strategy to interfere with the complex multifactorial and multisystem nature of ALS.

Original languageEnglish
JournalBrain Pathology
DOIs
Publication statusPublished - Jan 1 2019

Keywords

  • amyotrophic lateral sclerosis
  • purinergic receptors
  • skeletal muscle
  • SOD1G93A mice

ASJC Scopus subject areas

  • Neuroscience(all)
  • Pathology and Forensic Medicine
  • Clinical Neurology

Fingerprint Dive into the research topics of 'P2X7 activation enhances skeletal muscle metabolism and regeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis'. Together they form a unique fingerprint.

  • Cite this