Abstract
Original language | English |
---|---|
Pages (from-to) | 398 |
Journal | Dev. Cell |
Volume | 55 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- differentiation
- ER stress
- MYRF
- pancreatic cancer
- stress response
- transcription
- tumor heterogeneity
- unfolded protein response
Fingerprint Dive into the research topics of 'Pancreatic Cancer Cells Require the Transcription Factor MYRF to Maintain ER Homeostasis: Developmental Cell'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Pancreatic Cancer Cells Require the Transcription Factor MYRF to Maintain ER Homeostasis : Developmental Cell. / Milan, M.; Balestrieri, C.; Alfarano, G.; Polletti, S.; Prosperini, E.; Nicoli, P.; Spaggiari, P.; Zerbi, A.; Cirulli, V.; Diaferia, G.R.; Natoli, G.
In: Dev. Cell, Vol. 55, No. 4, 2020, p. 398.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Pancreatic Cancer Cells Require the Transcription Factor MYRF to Maintain ER Homeostasis
T2 - Developmental Cell
AU - Milan, M.
AU - Balestrieri, C.
AU - Alfarano, G.
AU - Polletti, S.
AU - Prosperini, E.
AU - Nicoli, P.
AU - Spaggiari, P.
AU - Zerbi, A.
AU - Cirulli, V.
AU - Diaferia, G.R.
AU - Natoli, G.
N1 - Export Date: 4 March 2021 CODEN: DCEEB Correspondence Address: Diaferia, G.R.; Department of Experimental Oncology, Italy; email: giuseppe.diaferia@ieo.it Correspondence Address: Natoli, G.; Department of Experimental Oncology, Italy; email: gioacchino.natoli@ieo.it Funding details: 20251, 5×1000 Funding details: GR-2016-02361721 Funding details: 30 EY001730 Funding details: National Institutes of Health, NIH, R01 DK103711, R01DK121275 Funding details: University of Washington, UW Funding details: Juvenile Diabetes Research Foundation Australia, 2-SRA-2019-836-S-B Funding details: Associazione Italiana per la Ricerca sul Cancro, AIRC Funding text 1: This study was supported by AIRC , the Italian Association for Research on Cancer (AIRC Investigator grant 20251 to G.N. and AIRC 5×1000 Grant ISM) and by the Italian Ministry of Health (grant GR-2016-02361721 to G.R.D.). This work was also partially supported by the Italian Ministry of Health with “Ricerca Corrente” and 5×1000 funds. V.C. was supported by NIH grants R01 DK103711 and R01DK121275, by a Juvenile Diabetes Research Foundation grant 2-SRA-2019-836-S-B. Transmission electron microscopy was performed with the expert assistance of Edward Parker and Dale E. Cunningham at the Vision Science Center, University of Washington (Seattle, WA) supported by NIH NEI Center Core Grant #P30 EY001730. References: Anderson, K.R., Singer, R.A., Balderes, D.A., Hernandez-Lagunas, L., Johnson, C.W., Artinger, K.B., Sussel, L., The L6 domain tetraspanin Tm4sf4 regulates endocrine pancreas differentiation and directed cell migration (2011) Development, 138, pp. 3213-3224; Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.M., Gingras, M.C., Miller, D.K., Quinn, M.C., Genomic analyses identify molecular subtypes of pancreatic cancer (2016) Nature, 531, pp. 47-52; Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Noble, W.S., MEME SUITE: tools for motif discovery and searching (2009) Nucleic Acids Res., 37, pp. W202-W208; Balestrieri, C., Alfarano, G., Milan, M., Tosi, V., Prosperini, E., Nicoli, P., Palamidessi, A., Natoli, G., Co-optation of tandem DNA repeats for the maintenance of mesenchymal identity (2018) Cell, 173, pp. 1150-1164.e14; Bankhead, P., Loughrey, M.B., Fernández, J.A., Dombrowski, Y., McArt, D.G., Dunne, P.D., McQuaid, S., Coleman, H.G., QuPath: open source software for digital pathology image analysis (2017) Sci. Rep., 7, p. 16878; Beauchemin, N., Arabzadeh, A., Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis (2013) Cancer Metastasis Rev., 32, pp. 643-671; Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data (2014) Bioinformatics, 30, pp. 2114-2120; Bujalka, H., Koenning, M., Jackson, S., Perreau, V.M., Pope, B., Hay, C.M., Mitew, S., Wegner, M., MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes (2013) PLoS Biol., 11, p. e1001625; Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Stuart, J.M., The Cancer Genome Atlas Pan-Cancer analysis project (2013) Nat. Genet., 45, pp. 1113-1120; Clarke, H.J., Chambers, J.E., Liniker, E., Marciniak, S.J., Endoplasmic reticulum stress in malignancy (2014) Cancer Cell, 25, pp. 563-573; Collisson, E.A., Sadanandam, A., Olson, P., Gibb, W.J., Truitt, M., Gu, S., Cooc, J., Jakkula, L., Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy (2011) Nat. Med., 17, pp. 500-503; Cubillos-Ruiz, J.R., Bettigole, S.E., Glimcher, L.H., Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in Cancer (2017) Cell, 168, pp. 692-706; Curina, A., Termanini, A., Barozzi, I., Prosperini, E., Simonatto, M., Polletti, S., Silvola, A., Bonaldi, T., High constitutive activity of a broad panel of housekeeping and tissue-specific cis-regulatory elements depends on a subset of ETS proteins (2017) Genes Dev., 31, pp. 399-412; Diaferia, G.R., Balestrieri, C., Prosperini, E., Nicoli, P., Spaggiari, P., Zerbi, A., Natoli, G., Dissection of transcriptional and cis-regulatory control of differentiation in human pancreatic cancer (2016) EMBO J., 35, pp. 595-617; Dobin, A., Gingeras, T.R., Mapping RNA-seq reads with STAR (2015) Curr. Protoc. Bioinformatics, 51, pp. 11.14.1-11.14.19; Eden, E., Navon, R., Steinfeld, I., Lipson, D., Yakhini, Z., GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists (2009) BMC Bioinformatics, 10, p. 48; Emery, B., Agalliu, D., Cahoy, J.D., Watkins, T.A., Dugas, J.C., Mulinyawe, S.B., Ibrahim, A., Barres, B.A., Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination (2009) Cell, 138, pp. 172-185; Feng, X., Coulombe, P.A., A role for disulfide bonding in keratin intermediate filament organization and dynamics in skin keratinocytes (2015) J. Cell Biol., 209, pp. 59-72; Garnai, S.J., Brinkmeier, M.L., Emery, B., Aleman, T.S., Pyle, L.C., Veleva-Rotse, B., Sisk, R.A., Li, J.Z., Variants in myelin regulatory factor (MYRF) cause autosomal dominant and syndromic nanophthalmos in humans and retinal degeneration in mice (2019) PLoS Genet., 15, p. e1008130; Gittes, G.K., Developmental biology of the pancreas: a comprehensive review (2009) Dev. Biol., 326, pp. 4-35; Haze, K., Yoshida, H., Yanagi, H., Yura, T., Mori, K., Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress (1999) Mol. Biol. Cell, 10, pp. 3787-3799; Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Glass, C.K., Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities (2010) Mol. Cell, 38, pp. 576-589; Hetz, C., The unfolded protein response: controlling cell fate decisions under ER stress and beyond (2012) Nat. Rev. Mol. Cell Biol., 13, pp. 89-102; Hidalgo, M., Pancreatic cancer (2010) N. Engl. J. Med., 362, pp. 1605-1617; Hu, R., Walker, E., Huang, C., Xu, Y., Weng, C., Erickson, G.E., Coldren, A., Kaverina, I., Myt Transcription Factors Prevent Stress-Response Gene overactivation to Enable Postnatal Pancreatic beta Cell Proliferation, Function, and Survival (2020) Dev. Cell, 53, pp. 390-405.e10; Huang, H., Teng, P., Du, J., Meng, J., Hu, X., Tang, T., Zhang, Z., Qiu, M., Interactive repression of MYRF self-cleavage and activity in oligodendrocyte differentiation by TMEM98 protein (2018) J. Neurosci., 38, pp. 9829-9839; Klöppel, G., Lingenthal, G., von Bülow, M., Kern, H.F., Histological and fine structural features of pancreatic ductal adenocarcinomas in relation to growth and prognosis: studies in xenografted tumours and clinico-histopathological correlation in a series of 75 cases (1985) Histopathology, 9, pp. 841-856; Koenning, M., Jackson, S., Hay, C.M., Faux, C., Kilpatrick, T.J., Willingham, M., Emery, B., Myelin gene regulatory factor is required for maintenance of myelin and mature oligodendrocyte identity in the adult CNS (2012) J. Neurosci., 32, pp. 12528-12542; Kufe, D.W., Mucins in cancer: function, prognosis and therapy (2009) Nat. Rev. Cancer, 9, pp. 874-885; Kumar, A., Tikoo, S., Maity, S., Sengupta, S., Sengupta, S., Kaur, A., Bachhawat, A.K., Mammalian proapoptotic factor ChaC1 and its homologues function as gamma-glutamyl cyclotransferases acting specifically on glutathione (2012) EMBO Rep., 13, pp. 1095-1101; Kurahashi, H., Azuma, Y., Masuda, A., Okuno, T., Nakahara, E., Imamura, T., Saitoh, M., Okumura, A., MYRF is associated with encephalopathy with reversible myelin vacuolization (2018) Ann. Neurol., 83, pp. 98-106; Langmead, B., Salzberg, S.L., Fast gapped-read alignment with Bowtie 2 (2012) Nat. Methods, 9, pp. 357-359; Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-Luria, A.H., Cummings, B.B., Analysis of protein-coding genetic variation in 60,706 humans (2016) Nature, 536, pp. 285-291; Li, Z., Park, Y., Marcotte, E.M., A bacteriophage tailspike domain promotes self-cleavage of a human membrane-bound transcription factor, the myelin regulatory factor MYRF (2013) PLoS Biol., 11, p. e1001624; Liao, Y., Smyth, G.K., Shi, W., featureCounts: an efficient general purpose program for assigning sequence reads to genomic features (2014) Bioinformatics, 30, pp. 923-930; Lin, W., Popko, B., Endoplasmic reticulum stress in disorders of myelinating cells (2009) Nat. Neurosci., 12, pp. 379-385; Ma, Y., Hendershot, L.M., Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and a branch that is shared with other cellular stress pathways (2004) J. Biol. Chem., 279, pp. 13792-13799; Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Ron, D., CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum (2004) Genes Dev., 18, pp. 3066-3077; McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., Bejerano, G., Great improves functional interpretation of cis-regulatory regions (2010) Nat. Biotechnol., 28, pp. 495-501; Milan, M., Balestrieri, C., Alfarano, G., Polletti, S., Prosperini, E., Spaggiari, P., Zerbi, A., Natoli, G., FOXA2 controls the cis-regulatory networks of pancreatic cancer cells in a differentiation grade-specific manner (2019) EMBO J., 38, p. e102161; Montano, S.P., Coté, M.L., Fingerman, I., Pierce, M., Vershon, A.K., Georgiadis, M.M., Crystal structure of the DNA-binding domain from Ndt80, a transcriptional activator required for meiosis in yeast (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 14041-14046; Mungrue, I.N., Pagnon, J., Kohannim, O., Gargalovic, P.S., Lusis, A.J., CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade (2009) J. Immunol., 182, pp. 466-476; Muraro, M.J., Dharmadhikari, G., Grün, D., Groen, N., Dielen, T., Jansen, E., van Gurp, L., van Oudenaarden, A., A single-cell transcriptome atlas of the human pancreas (2016) Cell Syst., 3, pp. 385-394.e3; Kalimuthu, S.N., Wilson, G.W., Grant, R.C., Seto, M., O'Kane, G., Vajpeyi, R., Notta, F., Chetty, R., Morphological classification of pancreatic ductal adenocarcinoma that predicts molecular subtypes and correlates with clinical outcome (2020) Gut, 69, pp. 317-328; Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Yoshinaga, K., Autophagy is activated for cell survival after endoplasmic reticulum stress (2006) Mol. Cell. Biol., 26, pp. 9220-9231; Okuda-Shimizu, Y., Hendershot, L.M., Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp (2007) Mol. Cell, 28, pp. 544-554; Picelli, S., Björklund, Å.K., Faridani, O.R., Sagasser, S., Winberg, G., Sandberg, R., Smart-seq2 for sensitive full-length transcriptome profiling in single cells (2013) Nat. Methods, 10, pp. 1096-1098; Picelli, S., Faridani, O.R., Björklund, A.K., Winberg, G., Sagasser, S., Sandberg, R., Full-length RNA-seq from single cells using Smart-seq2 (2014) Nat. Protoc., 9, pp. 171-181; Pinz, H., Pyle, L.C., Li, D., Izumi, K., Skraban, C., Tarpinian, J., Braddock, S.R., Bhoj, E.J., De novo variants in Myelin regulatory factor (MYRF) as candidates of a new syndrome of cardiac and urogenital anomalies (2018) Am. J. Med. Genet. A, 176, pp. 969-972; Pommier, A., Anaparthy, N., Memos, N., Kelley, Z.L., Gouronnec, A., Yan, R., Auffray, C., Iacobuzio-Donahue, C.A., Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases (2018) Science, 360, p. eaao4908; Qi, H., Yu, L., Zhou, X., Wynn, J., Zhao, H., Guo, Y., Zhu, N., Aspelund, G., De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders (2018) PLoS Genet, 14, p. e1007822; Ramírez, F., Dündar, F., Diehl, S., Grüning, B.A., Manke, T., deepTools: a flexible platform for exploring deep-sequencing data (2014) Nucleic Acids Res., 42, pp. W187-W191; Ramírez, F., Dündar, F., Diehl, S., Grüning, B.A., Manke, T., deepTools: a flexible platform for exploring deep-sequencing data (2014) Nucleic Acids Res, 42, pp. W187-W191; Robinson, M.D., McCarthy, D.J., Smyth, G.K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data (2010) Bioinformatics, 26, pp. 139-140; Rossetti, L.Z., Glinton, K., Yuan, B., Liu, P., Pillai, N., Mizerik, E., Magoulas, P., Sutton, V.R., Review of the phenotypic spectrum associated with haploinsufficiency of MYRF (2019) Am. J. Med. Genet. A, 179, pp. 1376-1382; Russel, S., Frand, A.R., Ruvkun, G., Regulation of the C. elegans molt by pqn-47 (2011) Dev. Biol., 360, pp. 297-309; Sakai, J., Duncan, E.A., Rawson, R.B., Hua, X., Brown, M.S., Goldstein, J.L., Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment (1996) Cell, 85, pp. 1037-1046; Schulz, E.C., Dickmanns, A., Urlaub, H., Schmitt, A., Mühlenhoff, M., Stummeyer, K., Schwarzer, D., Ficner, R., Crystal structure of an intramolecular chaperone mediating triple-beta-helix folding (2010) Nat. Struct. Mol. Biol., 17, pp. 210-215; Sevier, C.S., Qu, H., Heldman, N., Gross, E., Fass, D., Kaiser, C.A., Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1 (2007) Cell, 129, pp. 333-344; Supek, F., Bošnjak, M., Škunca, N., Šmuc, T., REVIGO summarizes and visualizes long lists of gene ontology terms (2011) PLoS One, 6, p. e21800; Tsuru, A., Fujimoto, N., Takahashi, S., Saito, M., Nakamura, D., Iwano, M., Iwawaki, T., Kohno, K., Negative feedback by IRE1beta optimizes mucin production in goblet cells (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 2864-2869; Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori, G., Benfeitas, R., Edfors, F., A pathology atlas of the human cancer transcriptome (2017) Science, 357, p. eaan2507; Walter, P., Ron, D., The unfolded protein response: from stress pathway to homeostatic regulation (2011) Science, 334, pp. 1081-1086; Wang, M., Kaufman, R.J., The impact of the endoplasmic reticulum protein-folding environment on cancer development (2014) Nat. Rev. Cancer, 14, pp. 581-597; Wilkinson, S., ER-phagy: shaping up and destressing the endoplasmic reticulum (2019) FEBS J., 286, pp. 2645-2663; Yang, X., Yamazaki, H., Yamakoshi, Y., Duverger, O., Morasso, M.I., Beniash, E., Trafficking and secretion of keratin 75 by ameloblasts in vivo (2019) J. Biol. Chem., 294, pp. 18475-18487; Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Liu, X.S., Model-based analysis of ChIP-seq (MACS) (2008) Genome Biol., 9, p. R137
PY - 2020
Y1 - 2020
N2 - Many tumors of endodermal origin are composed of highly secretory cancer cells that must adapt endoplasmic reticulum (ER) activity to enable proper folding of secreted proteins and prevent ER stress. We found that pancreatic ductal adenocarcinomas (PDACs) overexpress the myelin regulatory factor (MYRF), an ER membrane-associated transcription factor (TF) released by self-cleavage. MYRF was expressed in the well-differentiated secretory cancer cells, but not in the poorly differentiated quasi-mesenchymal cells that coexist in the same tumor. MYRF expression was controlled by the epithelial identity TF HNF1B, and it acted to fine-tune the expression of genes encoding highly glycosylated, cysteine-rich secretory proteins, thus preventing ER overload. MYRF-deficient PDAC cells showed signs of ER stress, impaired proliferation, and an inability to form spheroids in vitro, while in vivo they generated highly secretory but poorly proliferating and hypocellular tumors. These data indicate a role of MYRF in the control of ER homeostasis in highly secretory PDAC cells. Milan, Balestrieri et al. show that high secretory activity is a distinctive feature of well-differentiated pancreatic cancer cells. In this context, the ER-associated transcription factor MYRF, which is released by autocatalytic cleavage, maintains ER integrity and prevents ER stress. © 2020 Elsevier Inc.
AB - Many tumors of endodermal origin are composed of highly secretory cancer cells that must adapt endoplasmic reticulum (ER) activity to enable proper folding of secreted proteins and prevent ER stress. We found that pancreatic ductal adenocarcinomas (PDACs) overexpress the myelin regulatory factor (MYRF), an ER membrane-associated transcription factor (TF) released by self-cleavage. MYRF was expressed in the well-differentiated secretory cancer cells, but not in the poorly differentiated quasi-mesenchymal cells that coexist in the same tumor. MYRF expression was controlled by the epithelial identity TF HNF1B, and it acted to fine-tune the expression of genes encoding highly glycosylated, cysteine-rich secretory proteins, thus preventing ER overload. MYRF-deficient PDAC cells showed signs of ER stress, impaired proliferation, and an inability to form spheroids in vitro, while in vivo they generated highly secretory but poorly proliferating and hypocellular tumors. These data indicate a role of MYRF in the control of ER homeostasis in highly secretory PDAC cells. Milan, Balestrieri et al. show that high secretory activity is a distinctive feature of well-differentiated pancreatic cancer cells. In this context, the ER-associated transcription factor MYRF, which is released by autocatalytic cleavage, maintains ER integrity and prevents ER stress. © 2020 Elsevier Inc.
KW - differentiation
KW - ER stress
KW - MYRF
KW - pancreatic cancer
KW - stress response
KW - transcription
KW - tumor heterogeneity
KW - unfolded protein response
U2 - 10.1016/j.devcel.2020.09.011
DO - 10.1016/j.devcel.2020.09.011
M3 - Article
VL - 55
SP - 398
JO - Dev. Cell
JF - Dev. Cell
SN - 1534-5807
IS - 4
ER -