Abstract
Original language | English |
---|---|
Article number | e1008476 |
Number of pages | 33 |
Journal | PLoS Pathog. |
Volume | 16 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- signal peptidase
- signal peptide
- ARPE-19 cell line
- Article
- Catarrhini
- cell migration
- confocal microscopy
- controlled study
- CRL 2302 cell line
- Cytomegalovirus
- evolutionary adaptation
- female
- fibroblast
- focus expansion assay
- functional assessment
- gene
- gene mutation
- gene sequence
- genetic selection
- genetic variability
- growth competition assay
- HEK293 cell line
- HeLa cell line
- human
- human cell
- male
- molecular dynamics
- molecular evolution
- molecular genetics
- mutagenesis
- nonhuman
- orthology
- phenotype
- protein interaction
- retina pigment cell
- SCRC 1041 cell line
- sequence alignment
- species difference
- species diversity
- UL70 gene
- virus replication
Fingerprint Dive into the research topics of 'Past and ongoing adaptation of human cytomegalovirus to its host: PLoS Pathogens'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Past and ongoing adaptation of human cytomegalovirus to its host : PLoS Pathogens. / Mozzi, A.; Biolatti, M.; Cagliani, R.; Forni, D.; Dell’Oste, V.; Pontremoli, C.; Vantaggiato, C.; Pozzoli, U.; Clerici, M.; Landolfo, S.; Sironi, M.
In: PLoS Pathog., Vol. 16, No. 5, e1008476, 2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Past and ongoing adaptation of human cytomegalovirus to its host
T2 - PLoS Pathogens
AU - Mozzi, A.
AU - Biolatti, M.
AU - Cagliani, R.
AU - Forni, D.
AU - Dell’Oste, V.
AU - Pontremoli, C.
AU - Vantaggiato, C.
AU - Pozzoli, U.
AU - Clerici, M.
AU - Landolfo, S.
AU - Sironi, M.
N1 - Cited By :1 Export Date: 24 July 2020 Correspondence Address: Sironi, M.; Scientific Institute, IRCCS E. MEDEA, BioinformaticsItaly; email: manuela.sironi@BP.LNF.it Funding details: 2015RMNSTA Funding text 1: This work was supported by the Italian Ministry of Health (?Ricerca Corrente 2019-2020? to MS, ?Ricerca Corrente 2018-2020? to DF) and by the Italian Ministry of Education, University and Research (?PRIN 2015?, 2015RMNSTA to VDO). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Andrea Citterio for providing technical support in NGS analysis. References: Barry, P.A., William Chang, W., Primate betaherpesviruses (2007) Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, pp. 1051-1075. , Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, et al, editors. Cambridge: Cambridge University Press; 2007; Zuhair, M., Smit, G.S.A., Wallis, G., Jabbar, F., Smith, C., Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis (2019) Rev Med Virol, 29 (3). , https://doi.org/10.1002/rmv.2034, PMID: 30706584; Griffiths, P., Baraniak, I., Reeves, M., The pathogenesis of human cytomegalovirus (2015) J Pathol, 235 (2), pp. 288-297. , https://doi.org/10.1002/path.4437, PMID: 25205255; Manicklal, S., Emery, V.C., Lazzarotto, T., Boppana, S.B., Gupta, R.K., The "silent" global burden of congenital cytomegalovirus (2013) Clin Microbiol Rev, 26 (1), pp. 86-102. , https://doi.org/10.1128/CMR.00062-12, PMID: 23297260; Rawlinson, W.D., Boppana, S.B., Fowler, K.B., Kimberlin, D.W., Lazzarotto, T., Congenital cytomegalovirus infection in pregnancy and the neonate: Consensus recommendations for prevention, diagnosis, and therapy (2017) Lancet Infect Dis, 17 (6), pp. e177-e188. , https://doi.org/10.1016/S1473-3099(17)30143-3, PMID: 28291720; Wang, G.C., Kao, W.H., Murakami, P., Xue, Q.L., Chiou, R.B., Cytomegalovirus infection and the risk of mortality and frailty in older women: A prospective observational cohort study (2010) Am J Epidemiol, 171 (10), pp. 1144-1152. , https://doi.org/10.1093/aje/kwq062, PMID: 20400465; Dolan, A., Cunningham, C., Hector, R.D., Hassan-Walker, A.F., Lee, L., Genetic content of wild-type human cytomegalovirus (2004) J Gen Virol, 85, pp. 1301-1312. , https://doi.org/10.1099/vir.0.79888-0, PMID: 15105547; Murphy, E., Yu, D., Grimwood, J., Schmutz, J., Dickson, M., Coding potential of laboratory and clinical strains of human cytomegalovirus (2003) Proc Natl Acad Sci U S A, 100 (25), pp. 14976-14981. , https://doi.org/10.1073/pnas.2136652100, PMID: 14657367; McGeoch, D.J., Rixon, F.J., Davison, A.J., Topics in herpesvirus genomics and evolution (2006) Virus Res, 117 (1), pp. 90-104. , https://doi.org/10.1016/j.virusres.2006.01.002, PMID: 16490275; Davison, A.J., Comparative analysis of the genomes (2007) Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, pp. 10-26. , Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, et al, editors. Cambridge: Cambridge University Press; 2007; van Damme, E., van Loock, M., Functional annotation of human cytomegalovirus gene products: An update (2014) Front Microbiol, 5, p. 218. , https://doi.org/10.3389/fmicb.2014.00218, PMID: 24904534; Mocarski, E., Jr, Betaherpes viral genes and their functions (2007) Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, pp. 204-230. , Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, et al, editors. Cambridge: Cambridge University Press; 2007; McGeoch, D.J., Cook, S., Dolan, A., Jamieson, F.E., Telford, E.A., Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses (1995) J Mol Biol, 247 (3), pp. 443-458. , https://doi.org/10.1006/jmbi.1995.0152, PMID: 7714900; Russell, J.N., Marsh, A.K., Willer, D.O., Ambagala, A.P., Dzamba, M., A novel strain of cynomolgus macaque cytomegalovirus: Implications for host-virus co-evolution (2016) BMC Genomics, 17, pp. 277-016–2588-3; Sironi, M., Cagliani, R., Forni, D., Clerici, M., Evolutionary insights into host-pathogen interactions from mammalian sequence data (2015) Nat Rev Genet, 16 (4), pp. 224-236. , https://doi.org/10.1038/nrg3905, PMID: 25783448; Sijmons, S., Thys, K., Mbong Ngwese, M., van Damme, E., Dvorak, J., High-throughput analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of gene-disrupting mutations and pervasive recombination (2015) J Virol, 89 (15), pp. 7673-7695. , https://doi.org/10.1128/JVI.00578-15, PMID: 25972543; Cudini, J., Roy, S., Houldcroft, C.J., Bryant, J.M., Depledge, D.P., Human cytomegalovirus haplotype reconstruction reveals high diversity due to superinfection and evidence of within-host recombination (2019) Proc Natl Acad Sci U S A, 116 (12), pp. 5693-5698. , https://doi.org/10.1073/pnas.1818130116, PMID: 30819890; Dunn, W., Chou, C., Li, H., Hai, R., Patterson, D., Functional profiling of a human cytomegalovirus genome (2003) Proc Natl Acad Sci U S A, 100 (24), pp. 14223-14228. , https://doi.org/10.1073/pnas.2334032100, PMID: 14623981; Stamatakis, A., RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies (2014) Bioinformatics, 30 (9), pp. 1312-1313. , https://doi.org/10.1093/bioinformatics/btu033, PMID: 24451623; Yu, D., Silva, M.C., Shenk, T., Functional map of human cytomegalovirus AD169 defined by global mutational analysis (2003) Proc Natl Acad Sci U S A, 100 (21), pp. 12396-12401. , https://doi.org/10.1073/pnas.1635160100, PMID: 14519856; Zhang, J., Nielsen, R., Yang, Z., Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level (2005) Mol Biol Evol, 22 (12), pp. 2472-2479. , https://doi.org/10.1093/molbev/msi237, PMID: 16107592; Smith, R.M., Kosuri, S., Kerry, J.A., Role of human cytomegalovirus tegument proteins in virion assembly (2014) Viruses, 6 (2), pp. 582-605. , https://doi.org/10.3390/v6020582, PMID: 24509811; Tandon, R., Mocarski, E.S., Viral and host control of cytomegalovirus maturation (2012) Trends Microbiol, 20 (8), pp. 392-401. , https://doi.org/10.1016/j.tim.2012.04.008, PMID: 22633075; Malito, E., Chandramouli, S., Carfi, A., From recognition to execution-the HCMV pentamer from receptor binding to fusion triggering (2018) Curr Opin Virol, 31, pp. 43-51. , https://doi.org/10.1016/j.coviro.2018.05.004, PMID: 29866439; Meyer, H., Sundqvist, V.A., Pereira, L., Mach, M., Glycoprotein gp116 of human cytomegalovirus contains epitopes for strain-common and strain-specific antibodies (1992) J Gen Virol, 73, pp. 2375-2383. , Pt 9; Spindler, N., Diestel, U., Stump, J.D., Wiegers, A.K., Winkler, T.H., Structural basis for the recognition of human cytomegalovirus glycoprotein B by a neutralizing human antibody (2014) PLoS Pathog, 10 (10). , https://doi.org/10.1371/journal.ppat.1004377, PMID: 25299639; Phillips, S.L., Bresnahan, W.A., Identification of binary interactions between human cytomegalovirus virion proteins (2011) J Virol, 85 (1), pp. 440-447. , https://doi.org/10.1128/JVI.01551-10, PMID: 20962080; To, A., Bai, Y., Shen, A., Gong, H., Umamoto, S., Yeast two hybrid analyses reveal novel binary interactions between human cytomegalovirus-encoded virion proteins (2011) PLoS One, 6 (4). , https://doi.org/10.1371/journal.pone.0017796, PMID: 21483780; Guirimand, T., Delmotte, S., Navratil, V., Virhostnet 2.0: Surfing on the web of virus/host molecular interactions data (2015) Nucleic Acids Res, 43 (Database issue), pp. D583-D587. , https://doi.org/10.1093/nar/gku1121, PMID: 25392406; Yu, X., Jih, J., Jiang, J., Zhou, Z.H., Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150 (2017) Science, 356 (6345). , https://doi.org/10.1126/science.aam6892, PMID: 28663444; Silvestri, M., Sundqvist, V.A., Ruden, U., Wahren, B., Characterization of a major antigenic region on gp55 of human cytomegalovirus (1991) J Gen Virol, 72, pp. 3017-3023. , Pt 12; Chandramouli, S., Ciferri, C., Nikitin, P.A., Calo, S., Gerrein, R., Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody (2015) Nat Commun, 6, p. 8176. , https://doi.org/10.1038/ncomms9176, PMID: 26365435; Ohlin, M., Sundqvist, V.A., Mach, M., Wahren, B., Borrebaeck, C.A., Fine specificity of the human immune response to the major neutralization epitopes expressed on cytomegalovirus gp58/116 (gB), as determined with human monoclonal antibodies (1993) J Virol, 67 (2), pp. 703-710. , PMID: 7678304; Burke, H.G., Heldwein, E.E., Crystal structure of the human cytomegalovirus glycoprotein B (2015) PLoS Pathog, 11 (10). , https://doi.org/10.1371/journal.ppat.1005227, PMID: 26484870; Scrivano, L., Sinzger, C., Nitschko, H., Koszinowski, U.H., Adler, B., HCMV spread and cell tropism are determined by distinct virus populations (2011) PLoS Pathog, 7 (1). , https://doi.org/10.1371/journal.ppat.1001256, PMID: 21249233; Sinzger, C., Knapp, J., Plachter, B., Schmidt, K., Jahn, G., Quantification of replication of clinical cytomegalovirus isolates in cultured endothelial cells and fibroblasts by a focus expansion assay (1997) J Virol Methods, 63 (1-2), pp. 103-112. , https://doi.org/10.1016/s0166-0934(97)02082-x, PMID: 9015280; Mariame, B., Kappler-Gratias, S., Kappler, M., Balor, S., Gallardo, F., Real-time visualization and quantification of human cytomegalovirus replication in living cells using the ANCHOR DNA labeling technology (2018) J Virol, 92 (18). , https://doi.org/10.1128/JVI.00571-18Print2018, Sep 15. PMID: 29950406; Renzette, N., Bhattacharjee, B., Jensen, J.D., Gibson, L., Kowalik, T.F., Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants (2011) PLoS Pathog, 7 (5). , https://doi.org/10.1371/journal.ppat.1001344, PMID: 21625576; Renzette, N., Gibson, L., Bhattacharjee, B., Fisher, D., Schleiss, M.R., Rapid intrahost evolution of human cytomegalovirus is shaped by demography and positive selection (2013) PLoS Genet, 9 (9). , https://doi.org/10.1371/journal.pgen.1003735, PMID: 24086142; Kryazhimskiy, S., Plotkin, J.B., The population genetics of dN/dS (2008) PLoS Genet, 4 (12). , https://doi.org/10.1371/journal.pgen.1000304, PMID: 19081788; Renzette, N., Pokalyuk, C., Gibson, L., Bhattacharjee, B., Schleiss, M.R., Limits and patterns of cytomegalovirus genomic diversity in humans (2015) Proc Natl Acad Sci U S A, 112 (30), pp. E4120-E4128. , https://doi.org/10.1073/pnas.1501880112, PMID: 26150505; Wilson, D.J., Hernandez, R.D., Andolfatto, P., Przeworski, M., A population genetics-phylogenetics approach to inferring natural selection in coding sequences (2011) PLoS Genet, 7 (12). , https://doi.org/10.1371/journal.pgen.1002395, PMID: 22144911; Ha, S., Li, F., Troutman, M.C., Freed, D.C., Tang, A., Neutralization of diverse human cytomegalovirus strains conferred by antibodies targeting viral gH/gL/pUL128-131 pentameric complex (2017) J Virol, 91 (7). , https://doi.org/10.1128/JVI.02033-16, Print 2017 Apr 1. PMID: 28077654; Sedy, J.R., Balmert, M.O., Ware, B.C., Smith, W., Nemcovicova, I., A herpesvirus entry mediator mutein with selective agonist action for the inhibitory receptor B and T lymphocyte attenuator (2017) J Biol Chem, 292 (51), pp. 21060-21070. , https://doi.org/10.1074/jbc.M117.813295, PMID: 29061848; Chandramouli, S., Malito, E., Nguyen, T., Luisi, K., Donnarumma, D., Structural basis for potent antibody-mediated neutralization of human cytomegalovirus (2017) Sci Immunol, 2 (12). , https://doi.org/10.1126/sciimmunol.aan1457, PMID: 28783665; Ciferri, C., Chandramouli, S., Leitner, A., Donnarumma, D., Cianfrocco, M.A., Antigenic characterization of the HCMV gH/gL/gO and pentamer cell entry complexes reveals binding sites for potently neutralizing human antibodies (2015) PLoS Pathog, 11 (10). , https://doi.org/10.1371/journal.ppat.1005230, PMID: 26485028; Fouts, A.E., Comps-Agrar, L., Stengel, K.F., Ellerman, D., Schoeffler, A.J., Mechanism for neutralizing activity by the anti-CMV gH/gL monoclonal antibody MSL-109 (2014) Proc Natl Acad Sci U S A, 111 (22), pp. 8209-8214. , https://doi.org/10.1073/pnas.1404653111, PMID: 24843144; Gardner, T.J., Stein, K.R., Duty, J.A., Schwarz, T.M., Noriega, V.M., Functional screening for anti-CMV biologics identifies a broadly neutralizing epitope of an essential envelope protein (2016) Nat Commun, 7, p. 13627. , https://doi.org/10.1038/ncomms13627, PMID: 27966523; Bitra, A., Nemcovicova, I., Picarda, G., Doukov, T., Wang, J., Structure of human cytomegalovirus UL144, an HVEM orthologue, bound to the B and T cell lymphocyte attenuator (2019) J Biol Chem, 294 (27), pp. 10519-10529. , https://doi.org/10.1074/jbc.RA119.009199, PMID: 31126984; Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., Weblogo: A sequence logo generator (2004) Genome Res, 14 (6), pp. 1188-1190. , https://doi.org/10.1101/gr.849004, PMID: 15173120; Rost, B., Yachdav, G., Liu, J., The PredictProtein server (2004) Nucleic Acids Res, 32 (Web Server issue), pp. W321-W326. , https://doi.org/10.1093/nar/gkh377, PMID: 15215403; Cheung, T.C., Humphreys, I.R., Potter, K.G., Norris, P.S., Shumway, H.M., Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway (2005) Proc Natl Acad Sci U S A, 102 (37), pp. 13218-13223. , https://doi.org/10.1073/pnas.0506172102, PMID: 16131544; Poole, E., King, C.A., Sinclair, J.H., Alcami, A., The UL144 gene product of human cytomegalovirus activates NFkappaB via a TRAF6-dependent mechanism (2006) Embo J, 25 (18), pp. 4390-4399. , https://doi.org/10.1038/sj.emboj.7601287, PMID: 16932746; Paradowska, E., Studzinska, M., Suski, P., Kasztelewicz, B., Wisniewska-Ligier, M., Human cytomegalovirus UL55, UL144, and US28 genotype distribution in infants infected congenitally or postnatally (2015) J Med Virol, 87 (10), pp. 1737-1748. , https://doi.org/10.1002/jmv.24222, PMID: 25926093; Owji, H., Nezafat, N., Negahdaripour, M., Hajiebrahimi, A., Ghasemi, Y., A comprehensive review of signal peptides: Structure, roles, and applications (2018) Eur J Cell Biol, 97 (6), pp. 422-441. , https://doi.org/10.1016/j.ejcb.2018.06.003, PMID: 29958716; Snapp, E.L., McCaul, N., Quandte, M., Cabartova, Z., Bontjer, I., Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide (2017) Elife, 6. , https://doi.org/10.7554/eLife.26067, PMID: 28753126; Shao, S., Hegde, R.S., Membrane protein insertion at the endoplasmic reticulum (2011) Annu Rev Cell Dev Biol, 27, pp. 25-56. , https://doi.org/10.1146/annurev-cellbio-092910-154125, PMID: 21801011; Prickett, K.S., Amberg, D.C., Hopp, T.P., A calcium-dependent antibody for identification and purification of recombinant proteins (1989) Biotechniques, 7 (6), pp. 580-589. , PMID: 2698650; Fioretti, A., Furukawa, T., Santoli, D., Plotkin, S.A., Nonproductive infection of Guinea pig cells with human cytomegalovirus (1973) J Virol, 11 (6), pp. 998-1003. , PMID: 4351465; Lafemina, R.L., Hayward, G.S., Differences in cell-type-specific blocks to immediate early gene expression and DNA replication of human, simian and murine cytomegalovirus (1988) J Gen Virol, 69, pp. 355-374. , Pt 2; Ellsmore, V., Reid, G.G., Stow, N.D., Detection of human cytomegalovirus DNA replication in non-permissive vero and 293 cells (2003) J Gen Virol, 84, pp. 639-645. , https://doi.org/10.1099/vir.0.18812-0, PMID: 12604816; Jurak, I., Brune, W., Induction of apoptosis limits cytomegalovirus cross-species infection (2006) Embo J, 25 (11), pp. 2634-2642. , https://doi.org/10.1038/sj.emboj.7601133, PMID: 16688216; Schumacher, U., Handke, W., Jurak, I., Brune, W., Mutations in the M112/M113-coding region facilitate murine cytomegalovirus replication in human cells (2010) J Virol, 84 (16), pp. 7994-8006. , https://doi.org/10.1128/JVI.02624-09, PMID: 20519391; Perot, K., Walker, C.M., Spaete, R.R., Primary chimpanzee skin fibroblast cells are fully permissive for human cytomegalovirus replication (1992) J Gen Virol, 73, pp. 3281-3284. , Pt 12; Potzsch, S., Spindler, N., Wiegers, A.K., Fisch, T., Rucker, P., B cell repertoire analysis identifies new antigenic domains on glycoprotein B of human cytomegalovirus which are target of neutralizing antibodies (2011) PLoS Pathog, 7 (8). , https://doi.org/10.1371/journal.ppat.1002172, PMID: 21852946; Nelson, C.S., Huffman, T., Jenks, J.A., Cisneros de la Rosa, E., Xie, G., HCMV glycoprotein B subunit vaccine efficacy mediated by nonneutralizing antibody effector functions (2018) Proc Natl Acad Sci U S A, 115 (24), pp. 6267-6272. , https://doi.org/10.1073/pnas.1800177115, PMID: 29712861; Xia, L., Tang, A., Meng, W., Freed, D.C., He, L., Active evolution of memory B-cells specific to viral gH/gL/pUL128/130/131 pentameric complex in healthy subjects with silent human cytomegalovirus infection (2017) Oncotarget, 8 (43), pp. 73654-73669. , https://doi.org/10.18632/oncotarget.18359, PMID: 29088734; Urban, M., Britt, W., Mach, M., The dominant linear neutralizing antibody-binding site of glycoprotein gp86 of human cytomegalovirus is strain specific (1992) J Virol, 66 (3), pp. 1303-1311. , PMID: 1371164; Baraniak, I., Kropff, B., McLean, G.R., Pichon, S., Piras-Douce, F., Epitope-specific humoral responses to human cytomegalovirus glycoprotein-B vaccine with MF59: Anti-AD2 levels correlate with protection from viremia (2018) J Infect Dis, 217 (12), pp. 1907-1917. , https://doi.org/10.1093/infdis/jiy102, PMID: 29528415; Speckner, A., Glykofrydes, D., Ohlin, M., Mach, M., Antigenic domain 1 of human cytomegalovirus glycoprotein B induces a multitude of different antibodies which, when combined, results in incomplete virus neutralization (1999) J Gen Virol, 80, pp. 2183-2191. , Pt 8; Stangherlin, L.M., de Paula, F.N., Icimoto, M.Y., Ruiz, L.G.P., Nogueira, M.L., Positively selected sites at HCMV gB furin processing region and their effects in cleavage efficiency (2017) Front Microbiol, 8, p. 934. , https://doi.org/10.3389/fmicb.2017.00934, PMID: 28588572; Oliver, S.L., Sommer, M., Zerboni, L., Rajamani, J., Grose, C., Mutagenesis of varicella-zoster virus glycoprotein B: Putative fusion loop residues are essential for viral replication, and the furin cleavage motif contributes to pathogenesis in skin tissue in vivo (2009) J Virol, 83 (15), pp. 7495-7506. , https://doi.org/10.1128/JVI.00400-09, PMID: 19474103; Vallbracht, M., Brun, D., Tassinari, M., Vaney, M.C., Pehau-Arnaudet, G., Structure-function dissection of pseudorabies virus glycoprotein B fusion loops (2017) J Virol, 92 (1). , https://doi.org/10.1128/JVI.01203-17Print2018, Jan 1. PMID: 29046441; Kopp, A., Blewett, E., Misra, V., Mettenleiter, T.C., Proteolytic cleavage of bovine herpesvirus 1 (BHV-1) glycoprotein gB is not necessary for its function in BHV-1 or pseudorabies virus (1994) J Virol, 68 (3), pp. 1667-1674. , PMID: 8107227; Strive, T., Borst, E., Messerle, M., Radsak, K., Proteolytic processing of human cytomegalovirus glycoprotein B is dispensable for viral growth in culture (2002) J Virol, 76 (3), pp. 1252-1264. , https://doi.org/10.1128/JVI.76.3.1252-1264.2002, PMID: 11773401; Okazaki, K., Proteolytic cleavage of glycoprotein B is dispensable for in vitro replication, but required for syncytium formation of pseudorabies virus (2007) J Gen Virol, 88, pp. 1859-1865. , https://doi.org/10.1099/vir.0.82610-0, PMID: 17554016; Sorem, J., Longnecker, R., Cleavage of Epstein-Barr virus glycoprotein B is required for full function in cell-cell fusion with both epithelial and B cells (2009) J Gen Virol, 90, pp. 591-595. , https://doi.org/10.1099/vir.0.007237-0, PMID: 19218203; Jackson, J.W., Sparer, T., There is always another way! Cytomegalovirus’ multifaceted dissemination schemes (2018) Viruses, 10 (7). , https://doi.org/10.3390/v10070383, PMID: 30037007; Hegde, R.S., Bernstein, H.D., The surprising complexity of signal sequences (2006) Trends Biochem Sci, 31 (10), pp. 563-571. , https://doi.org/10.1016/j.tibs.2006.08.004, PMID: 16919958; Rutkowski, D.T., Ott, C.M., Polansky, J.R., Lingappa, V.R., Signal sequences initiate the pathway of maturation in the endoplasmic reticulum lumen (2003) J Biol Chem, 278 (32), pp. 30365-30372. , https://doi.org/10.1074/jbc.M302117200, PMID: 12771148; Martoglio, B., Dobberstein, B., Signal sequences: More than just greasy peptides (1998) Trends Cell Biol, 8 (10), pp. 410-415. , https://doi.org/10.1016/s0962-8924(98)01360-9, PMID: 9789330; Rehm, A., Stern, P., Ploegh, H.L., Tortorella, D., Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor (2001) Embo J, 20 (7), pp. 1573-1582. , https://doi.org/10.1093/emboj/20.7.1573, PMID: 11285222; Land, A., Zonneveld, D., Braakman, I., Folding of HIV-1 envelope glycoprotein involves extensive isomerization of disulfide bonds and conformation-dependent leader peptide cleavage (2003) Faseb J, 17 (9), pp. 1058-1067. , https://doi.org/10.1096/fj.02-0811com, PMID: 12773488; Yolitz, J., Schwing, C., Chang, J., van Ryk, D., Nawaz, F., Signal peptide of HIV envelope protein impacts glycosylation and antigenicity of gp120 (2018) Proc Natl Acad Sci U S A, 115 (10), pp. 2443-2448. , https://doi.org/10.1073/pnas.1722627115, PMID: 29463753; Upadhyay, C., Feyznezhad, R., Yang, W., Zhang, H., Zolla-Pazner, S., Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations (2018) PLoS Pathog, 14 (1). , https://doi.org/10.1371/journal.ppat.1006812, PMID: 29370305; Davison, A.J., Dolan, A., Akter, P., Addison, C., Dargan, D.J., The human cytomegalovirus genome revisited: Comparison with the chimpanzee cytomegalovirus genome (2003) J Gen Virol, 84, pp. 17-28. , https://doi.org/10.1099/vir.0.18606-0, PMID: 12533697; Hansen, S.G., Strelow, L.I., Franchi, D.C., Anders, D.G., Wong, S.W., Complete sequence and genomic analysis of rhesus cytomegalovirus (2003) J Virol, 77 (12), pp. 6620-6636. , https://doi.org/10.1128/JVI.77.12.6620-6636.2003, PMID: 12767982; Rivailler, P., Kaur, A., Johnson, R.P., Wang, F., Genomic sequence of rhesus cytomegalovirus 180.92: Insights into the coding potential of rhesus cytomegalovirus (2006) J Virol, 80 (8), pp. 4179-4182. , https://doi.org/10.1128/JVI.80.8.4179-4182.2006, PMID: 16571834; Blewett, E.L., Sherrod, C.J., Texier, J.R., Conrad, T.M., Dittmer, D.P., Complete genome sequences of mandrillus leucophaeus and papio ursinus cytomegaloviruses (2015) Genome Announc, 3 (4). , https://doi.org/10.1128/genomeA.00781-15, PMID: 26251484; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability (2013) Mol Biol Evol, 30 (4), pp. 772-780. , https://doi.org/10.1093/molbev/mst010, PMID: 23329690; Sela, I., Ashkenazy, H., Katoh, K., Pupko, T., Guidance2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters (2015) Nucleic Acids Res, 43 (W1), pp. W7-W14. , https://doi.org/10.1093/nar/gkv318, PMID: 25883146; Privman, E., Penn, O., Pupko, T., Improving the performance of positive selection inference by filtering unreliable alignment regions (2012) Mol Biol Evol, 29 (1), pp. 1-5. , https://doi.org/10.1093/molbev/msr177, PMID: 21772063; Darling, A.C., Mau, B., Blattner, F.R., Perna, N.T., Mauve: Multiple alignment of conserved genomic sequence with rearrangements (2004) Genome Res, 14 (7), pp. 1394-1403. , https://doi.org/10.1101/gr.2289704, PMID: 15231754; Darling, A.E., Mau, B., Perna, N.T., ProgressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement (2010) PLoS One, 5 (6). , https://doi.org/10.1371/journal.pone.0011147, PMID: 20593022; Cline, M.S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Integration of biological networks and gene expression data using cytoscape (2007) Nat Protoc, 2 (10), pp. 2366-2382. , https://doi.org/10.1038/nprot.2007.324, PMID: 17947979; Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., CDD: NCBI’s conserved domain database (2015) Nucleic Acids Res, 43 (Database issue), pp. D222-D226. , https://doi.org/10.1093/nar/gku1221, PMID: 25414356; Remmert, M., Biegert, A., Hauser, A., Soding, J., HHBlits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment (2011) Nat Methods, 9 (2), pp. 173-175. , https://doi.org/10.1038/nmeth.1818, PMID: 22198341; Stamatakis, A., RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models (2006) Bioinformatics, 22 (21), pp. 2688-2690. , https://doi.org/10.1093/bioinformatics/btl446, PMID: 16928733; Kosakovsky Pond, S.L., Frost, S.D., Not so different after all: A comparison of methods for detecting amino acid sites under selection (2005) Mol Biol Evol, 22 (5), pp. 1208-1222. , https://doi.org/10.1093/molbev/msi105, PMID: 15703242; Guindon, S., Delsuc, F., Dufayard, J.F., Gascuel, O., Estimating maximum likelihood phylogenies with PhyML (2009) Methods Mol Biol, 537, pp. 113-137. , https://doi.org/10.1007/978-1-59745-251-9_6, PMID: 19378142; Pohlert, T., (2014) The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR), p. 2004. , R Package: –2006; Kosakovsky Pond, S.L., Posada, D., Gravenor, M.B., Woelk, C.H., Frost, S.D., Automated phylogenetic detection of recombination using a genetic algorithm (2006) Mol Biol Evol, 23 (10), pp. 1891-1901. , https://doi.org/10.1093/molbev/msl051, PMID: 16818476; Murrell, B., Wertheim, J.O., Moola, S., Weighill, T., Scheffler, K., Detecting individual sites subject to episodic diversifying selection (2012) PLoS Genet, 8 (7). , https://doi.org/10.1371/journal.pgen.1002764, PMID: 22807683; Ashkenazy, H., Penn, O., Doron-Faigenboim, A., Cohen, O., Cannarozzi, G., FastML: A web server for probabilistic reconstruction of ancestral sequences (2012) Nucleic Acids Res, 40 (Web Server issue), pp. W580-W584. , https://doi.org/10.1093/nar/gks498, PMID: 22661579; Gariano, G.R., Dell’Oste, V., Bronzini, M., Gatti, D., Luganini, A., The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication (2012) PLoS Pathog, 8 (1). , https://doi.org/10.1371/journal.ppat.1002498, PMID: 22291595; Biolatti, M., Dell’Oste, V., Pautasso, S., von Einem, J., Marschall, M., Regulatory interaction between the cellular restriction factor IFI16 and viral pp65 (pUL83) modulates viral gene expression and IFI16 protein stability (2016) J Virol, 90 (18), pp. 8238-8250. , https://doi.org/10.1128/JVI.00923-16, PMID: 27384655; Tischer, B.K., von Einem, J., Kaufer, B., Osterrieder, N., Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli (2006) Biotechniques, 40 (2), pp. 191-197. , https://doi.org/10.2144/000112096, PMID: 16526409; Klucher, K.M., Sommer, M., Kadonaga, J.T., Spector, D.H., In vivo and in vitro analysis of transcriptional activation mediated by the human cytomegalovirus major immediate-early proteins (1993) Mol Cell Biol, 13 (2), pp. 1238-1250. , https://doi.org/10.1128/mcb.13.2.1238, PMID: 8423789; Tischer, B.K., Smith, G.A., Osterrieder, N., En passant mutagenesis: A two step markerless red recombination system (2010) Methods Mol Biol, 634, pp. 421-430. , https://doi.org/10.1007/978-1-60761-652-8_30, PMID: 20677001; Sinzger, C., Hahn, G., Digel, M., Katona, R., Sampaio, K.L., Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E (2008) J Gen Virol, 89, pp. 359-368. , https://doi.org/10.1099/vir.0.83286-0, PMID: 18198366; Bronzini, M., Luganini, A., Dell’Oste, V., de Andrea, M., Landolfo, S., The US16 gene of human cytomegalovirus is required for efficient viral infection of endothelial and epithelial cells (2012) J Virol, 86 (12), pp. 6875-6888. , https://doi.org/10.1128/JVI.06310-11, PMID: 22496217; Li, H., Durbin, R., Fast and accurate long-read alignment with burrows-wheeler transform (2010) Bioinformatics, 26 (5), pp. 589-595. , https://doi.org/10.1093/bioinformatics/btp698, PMID: 20080505; Li, H., A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data (2011) Bioinformatics, 27 (21), pp. 2987-2993. , https://doi.org/10.1093/bioinformatics/btr509, PMID: 21903627; Emery, V.C., Cope, A.V., Bowen, E.F., Gor, D., Griffiths, P.D., The dynamics of human cytomegalovirus replication in vivo (1999) J Exp Med, 190 (2), pp. 177-182. , https://doi.org/10.1084/jem.190.2.177, PMID: 10432281; Hartl, D.L., Clark, A.G., (1997) Principles of Population Genetics, , Sinauer associates Sunderland, MA
PY - 2020
Y1 - 2020
N2 - Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes. © 2020 Mozzi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AB - Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes. © 2020 Mozzi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
KW - signal peptidase
KW - signal peptide
KW - ARPE-19 cell line
KW - Article
KW - Catarrhini
KW - cell migration
KW - confocal microscopy
KW - controlled study
KW - CRL 2302 cell line
KW - Cytomegalovirus
KW - evolutionary adaptation
KW - female
KW - fibroblast
KW - focus expansion assay
KW - functional assessment
KW - gene
KW - gene mutation
KW - gene sequence
KW - genetic selection
KW - genetic variability
KW - growth competition assay
KW - HEK293 cell line
KW - HeLa cell line
KW - human
KW - human cell
KW - male
KW - molecular dynamics
KW - molecular evolution
KW - molecular genetics
KW - mutagenesis
KW - nonhuman
KW - orthology
KW - phenotype
KW - protein interaction
KW - retina pigment cell
KW - SCRC 1041 cell line
KW - sequence alignment
KW - species difference
KW - species diversity
KW - UL70 gene
KW - virus replication
U2 - 10.1371/journal.ppat.1008476
DO - 10.1371/journal.ppat.1008476
M3 - Article
VL - 16
JO - PLoS Pathog.
JF - PLoS Pathog.
SN - 1553-7366
IS - 5
M1 - e1008476
ER -