TY - JOUR
T1 - PET neuroimaging
T2 - Insights on dystonia and Tourette syndrome and potential applications
AU - Alongi, Pierpaolo
AU - Iaccarino, Leonardo
AU - Perani, Daniela
PY - 2014
Y1 - 2014
N2 - Primary Dystonia (pD) is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both. Gilles de la Tourette Syndrome (GTS) is a childhood-onset neuropsychiatric developmental disorder characterised by motor and phonic tics, which could progress to behavioural changes. GTS and obsessive-compulsive disorders (OCD) are often seen in comorbidity, also suggesting a possible overlap in the pathophysiological bases of these two conditions. PET techniques are of considerable value in detecting functional and molecular abnormalities in vivo, according to the adopted radioligands. For example, PET is the unique technique that allows in vivo investigation of neurotransmitter systems, providing evidence of changes in GTS or pD. For example, presynaptic and postsynaptic dopaminergic studies with PET have shown alterations compatible with dysfunction or loss of D2-receptors bearing neurons, increased synaptic dopamine levels, or both. Measures of cerebral glucose metabolism with 18F-fluorodeoxyglucose (18F-FDG PET) are very sensitive in showing brain functional alterations as well. 18F-FDG PET data have shown metabolic changes within the cortico-striato-pallido-thalamo-cortical and cerebello-thalamo-cortical networks, revealing possible involvement of brain circuits not limited to basal ganglia in pD and GTS. The aim of this work is to overview PET consistent neuroimaging literature on pD and GTS that has provided functional and molecular knowledge of the underlying neural dysfunction. Furthermore we suggest potential applications of these techniques in monitoring treatments.
AB - Primary Dystonia (pD) is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both. Gilles de la Tourette Syndrome (GTS) is a childhood-onset neuropsychiatric developmental disorder characterised by motor and phonic tics, which could progress to behavioural changes. GTS and obsessive-compulsive disorders (OCD) are often seen in comorbidity, also suggesting a possible overlap in the pathophysiological bases of these two conditions. PET techniques are of considerable value in detecting functional and molecular abnormalities in vivo, according to the adopted radioligands. For example, PET is the unique technique that allows in vivo investigation of neurotransmitter systems, providing evidence of changes in GTS or pD. For example, presynaptic and postsynaptic dopaminergic studies with PET have shown alterations compatible with dysfunction or loss of D2-receptors bearing neurons, increased synaptic dopamine levels, or both. Measures of cerebral glucose metabolism with 18F-fluorodeoxyglucose (18F-FDG PET) are very sensitive in showing brain functional alterations as well. 18F-FDG PET data have shown metabolic changes within the cortico-striato-pallido-thalamo-cortical and cerebello-thalamo-cortical networks, revealing possible involvement of brain circuits not limited to basal ganglia in pD and GTS. The aim of this work is to overview PET consistent neuroimaging literature on pD and GTS that has provided functional and molecular knowledge of the underlying neural dysfunction. Furthermore we suggest potential applications of these techniques in monitoring treatments.
KW - Movement disorders
KW - Neuroimaging
KW - PET
KW - Primary dystonia
KW - Statistical parametric mapping
KW - Tourette syndrome
KW - Treatment monitoring
UR - http://www.scopus.com/inward/record.url?scp=84907216551&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907216551&partnerID=8YFLogxK
U2 - 10.3389/fneur.2014.00183
DO - 10.3389/fneur.2014.00183
M3 - Article
AN - SCOPUS:84907216551
VL - 5
JO - Frontiers in Neurology
JF - Frontiers in Neurology
SN - 1664-2295
IS - SEP
M1 - 183
ER -