Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

Research output: Contribution to journalArticle

84 Citations (Scopus)

Abstract

We examined whether selective activation of mGlu4 metabotropic glutamate receptors attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage in mice. C57BL mice were treated with a single dose of MPTP (30 mg/kg, i.p.) preceded, 30 min earlier, by a systemic injection of the mGlu4 receptor enhancer N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). PHCCC was injected either subcutaneously in cremophor EL or intraperitoneally in saline containing 50% DMSO. PHCCC treatment (3 or 10 mg/kg) significantly reduced MPTP toxicity, as assessed by measurements of the striatal levels of dopamine and its metabolites and by tyrosine hydroxylase, dopamine transporter, and glial fibrillary acidic protein immunostaining in the corpus striatum and substantia nigra. In another set of experiments, a higher cumulative dose of MPTP (80 mg/kg divided into four injections with 2 h of interval) was injected to mGlu4-/- mice and their Sv129/CD1 wild-type controls. A higher dose was used in these experiments because Sv129/CD1 mice are less sensitive to MPTP toxicity. Systemic administration of PHCCC was protective in wild-type mice but failed to affect nigrostriatal damage in mGlu4-/- mice. Finally, unilateral infusion of PHCCC in the external globus pallidus protected the ipsilateral nigrostriatal pathway against MPTP toxicity. These data support the view that mGlu4 receptors are potential targets for the experimental treatment of parkinsonism.

Original languageEnglish
Pages (from-to)7222-7229
Number of pages8
JournalJournal of Neuroscience
Volume26
Issue number27
DOIs
Publication statusPublished - Jul 5 2006

Fingerprint

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
Metabotropic Glutamate Receptors
Pharmacology
Corpus Striatum
Dopamine Plasma Membrane Transport Proteins
Injections
Globus Pallidus
Glial Fibrillary Acidic Protein
Tyrosine 3-Monooxygenase
Parkinsonian Disorders
Substantia Nigra
Dimethyl Sulfoxide
Inbred C57BL Mouse
Dopamine
Therapeutics

Cite this

@article{f46b94f7e4c346a0ba421e3a8a694e88,
title = "Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.",
abstract = "We examined whether selective activation of mGlu4 metabotropic glutamate receptors attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage in mice. C57BL mice were treated with a single dose of MPTP (30 mg/kg, i.p.) preceded, 30 min earlier, by a systemic injection of the mGlu4 receptor enhancer N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). PHCCC was injected either subcutaneously in cremophor EL or intraperitoneally in saline containing 50{\%} DMSO. PHCCC treatment (3 or 10 mg/kg) significantly reduced MPTP toxicity, as assessed by measurements of the striatal levels of dopamine and its metabolites and by tyrosine hydroxylase, dopamine transporter, and glial fibrillary acidic protein immunostaining in the corpus striatum and substantia nigra. In another set of experiments, a higher cumulative dose of MPTP (80 mg/kg divided into four injections with 2 h of interval) was injected to mGlu4-/- mice and their Sv129/CD1 wild-type controls. A higher dose was used in these experiments because Sv129/CD1 mice are less sensitive to MPTP toxicity. Systemic administration of PHCCC was protective in wild-type mice but failed to affect nigrostriatal damage in mGlu4-/- mice. Finally, unilateral infusion of PHCCC in the external globus pallidus protected the ipsilateral nigrostriatal pathway against MPTP toxicity. These data support the view that mGlu4 receptors are potential targets for the experimental treatment of parkinsonism.",
author = "Giuseppe Battaglia and Busceti, {Carla L.} and Gemma Molinaro and Francesca Biagioni and Anna Traficante and Ferdinando Nicoletti and Valeria Bruno",
year = "2006",
month = "7",
day = "5",
doi = "10.1523/JNEUROSCI.1595-06.2006",
language = "English",
volume = "26",
pages = "7222--7229",
journal = "Journal of Neuroscience",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "27",

}

TY - JOUR

T1 - Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

AU - Battaglia, Giuseppe

AU - Busceti, Carla L.

AU - Molinaro, Gemma

AU - Biagioni, Francesca

AU - Traficante, Anna

AU - Nicoletti, Ferdinando

AU - Bruno, Valeria

PY - 2006/7/5

Y1 - 2006/7/5

N2 - We examined whether selective activation of mGlu4 metabotropic glutamate receptors attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage in mice. C57BL mice were treated with a single dose of MPTP (30 mg/kg, i.p.) preceded, 30 min earlier, by a systemic injection of the mGlu4 receptor enhancer N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). PHCCC was injected either subcutaneously in cremophor EL or intraperitoneally in saline containing 50% DMSO. PHCCC treatment (3 or 10 mg/kg) significantly reduced MPTP toxicity, as assessed by measurements of the striatal levels of dopamine and its metabolites and by tyrosine hydroxylase, dopamine transporter, and glial fibrillary acidic protein immunostaining in the corpus striatum and substantia nigra. In another set of experiments, a higher cumulative dose of MPTP (80 mg/kg divided into four injections with 2 h of interval) was injected to mGlu4-/- mice and their Sv129/CD1 wild-type controls. A higher dose was used in these experiments because Sv129/CD1 mice are less sensitive to MPTP toxicity. Systemic administration of PHCCC was protective in wild-type mice but failed to affect nigrostriatal damage in mGlu4-/- mice. Finally, unilateral infusion of PHCCC in the external globus pallidus protected the ipsilateral nigrostriatal pathway against MPTP toxicity. These data support the view that mGlu4 receptors are potential targets for the experimental treatment of parkinsonism.

AB - We examined whether selective activation of mGlu4 metabotropic glutamate receptors attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage in mice. C57BL mice were treated with a single dose of MPTP (30 mg/kg, i.p.) preceded, 30 min earlier, by a systemic injection of the mGlu4 receptor enhancer N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). PHCCC was injected either subcutaneously in cremophor EL or intraperitoneally in saline containing 50% DMSO. PHCCC treatment (3 or 10 mg/kg) significantly reduced MPTP toxicity, as assessed by measurements of the striatal levels of dopamine and its metabolites and by tyrosine hydroxylase, dopamine transporter, and glial fibrillary acidic protein immunostaining in the corpus striatum and substantia nigra. In another set of experiments, a higher cumulative dose of MPTP (80 mg/kg divided into four injections with 2 h of interval) was injected to mGlu4-/- mice and their Sv129/CD1 wild-type controls. A higher dose was used in these experiments because Sv129/CD1 mice are less sensitive to MPTP toxicity. Systemic administration of PHCCC was protective in wild-type mice but failed to affect nigrostriatal damage in mGlu4-/- mice. Finally, unilateral infusion of PHCCC in the external globus pallidus protected the ipsilateral nigrostriatal pathway against MPTP toxicity. These data support the view that mGlu4 receptors are potential targets for the experimental treatment of parkinsonism.

UR - http://www.scopus.com/inward/record.url?scp=33746233386&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33746233386&partnerID=8YFLogxK

U2 - 10.1523/JNEUROSCI.1595-06.2006

DO - 10.1523/JNEUROSCI.1595-06.2006

M3 - Article

VL - 26

SP - 7222

EP - 7229

JO - Journal of Neuroscience

JF - Journal of Neuroscience

SN - 0270-6474

IS - 27

ER -