Pharmacological activation of SIRT6 triggers lethal autophagy in human cancer cells

Sara Iachettini, Daniela Trisciuoglio, Dante Rotili, Alessia Lucidi, Erica Salvati, Pasquale Zizza, Luca Di Leo, Donatella Del Bufalo, Maria Rosa Ciriolo, Carlo Leonetti, Clemens Steegborn, Antonello Mai, Angela Rizzo, Annamaria Biroccio

Research output: Contribution to journalArticlepeer-review

Abstract

Sirtuin 6 (SIRT6) is a member of the NAD+-dependent class III deacetylase sirtuin family, which plays a key role in cancer by controlling transcription, genome stability, telomere integrity, DNA repair, and autophagy. Here we analyzed the molecular and biological effects of UBCS039, the first synthetic SIRT6 activator. Our data demonstrated that UBCS039 induced a time-dependent activation of autophagy in several human tumor cell lines, as evaluated by increased content of the lipidated form of LC3B by western blot and of autophagosomal puncta by microscopy analysis of GFP-LC3. UBCS039-mediated activation of autophagy was strictly dependent on SIRT6 deacetylating activity since the catalytic mutant H133Y failed to activate autophagy. At the molecular level, SIRT6-mediated autophagy was triggered by an increase of ROS levels, which, in turn, resulted in the activation of the AMPK-ULK1-mTOR signaling pathway. Interestingly, antioxidants were able to completely counteract UBCS039-induced autophagy, suggesting that ROS burst had a key role in upstream events leading to autophagy commitment. Finally, sustained activation of SIRT6 resulted in autophagy-related cell death, a process that was markedly attenuated using either a pan caspases inhibitor (zVAD-fmk) or an autophagy inhibitor (CQ). Overall, our results identified UBCS039 as an efficient SIRT6 activator, thereby providing a proof of principle that modulation of the enzyme can influence therapeutic strategy by enhancing autophagy-dependent cell death.

Original languageEnglish
Article number996
JournalCell Death and Disease
Volume9
Issue number10
DOIs
Publication statusPublished - Oct 1 2018

ASJC Scopus subject areas

  • Immunology
  • Cellular and Molecular Neuroscience
  • Cell Biology
  • Cancer Research

Fingerprint Dive into the research topics of 'Pharmacological activation of SIRT6 triggers lethal autophagy in human cancer cells'. Together they form a unique fingerprint.

Cite this