Phenotypic profile linked to inhibition of the major Zn influx system in Salmonella enterica: Proteomics and ionomics investigations

Domenico Ciavardelli, Serena Ammendola, Maurizio Ronci, Ada Consalvo, Valeria Marzano, Mario Lipoma, Paolo Sacchetta, Giorgio Federici, Carmine Di Ilio, Andrea Battistoni, Andrea Urbani

Research output: Contribution to journalArticle

Abstract

Zinc is required for a wide variety of cellular functions and plays a key role in bacterial metabolism and virulence. However, Zn can also be toxic and, therefore, its influx is tightly regulated. The high affinity zinc uptake transporter ZnuABC is the main Zn influx system in Salmonella enterica under conditions of Zn starvation. It has been shown that deletion of the gene encoding for its periplasmic subunit ZnuA significantly affects S. Typhimurium growth rate and virulence, highlighting the importance of this system in the host-pathogen interaction. To gain further insight into the mechanisms involved in Zn influx regulation, we characterized the main alterations in the ionome and proteome of S. Typhimurium wild type and znuA mutant strains grown either under Zn starvation or under Zn-replete conditions. We found significant differences in the element profile and protein expression that were reversed by Zn supplementation. In particular, several of the differentially regulated proteins are predicted to be metal-binding proteins. Interestingly, their over-expression in the znuA mutant strain strictly depends on Zn starvation and correlates with the differences found at the ionome level. In conclusion, our data demonstrate that inhibition of Zn influx has relevant effects either on the bacterial ionome or proteome and shed new light on the role of the ZnuABC system and Zn influx in S. Typhimurium pathogenicity.

Original languageEnglish
Pages (from-to)608-619
Number of pages12
JournalMolecular BioSystems
Volume7
Issue number3
DOIs
Publication statusPublished - Mar 1 2011

    Fingerprint

ASJC Scopus subject areas

  • Biotechnology
  • Molecular Biology

Cite this

Ciavardelli, D., Ammendola, S., Ronci, M., Consalvo, A., Marzano, V., Lipoma, M., Sacchetta, P., Federici, G., Di Ilio, C., Battistoni, A., & Urbani, A. (2011). Phenotypic profile linked to inhibition of the major Zn influx system in Salmonella enterica: Proteomics and ionomics investigations. Molecular BioSystems, 7(3), 608-619. https://doi.org/10.1039/c0mb00140f