Phenotypic transitions enacted by simulated microgravity do not alter coherence in gene transcription profile

Agnese Po, Alessandro Giuliani, Maria Grazia Masiello, Alessandra Cucina, Angela Catizone, Giulia Ricci, Martina Chiacchiarini, Marco Tafani, Elisabetta Ferretti, Mariano Bizzarri

Research output: Contribution to journalArticlepeer-review


Cells in simulated microgravity undergo a reversible morphology switch, causing the appearance of two distinct phenotypes. Despite the dramatic splitting into an adherent-fusiform and a floating-spherical population, when looking at the gene-expression phase space, cell transition ends up in a largely invariant gene transcription profile characterized by only mild modifications in the respective Pearson’s correlation coefficients. Functional changes among the different phenotypes emerging in simulated microgravity using random positioning machine are adaptive modifications—as cells promptly recover their native phenotype when placed again into normal gravity—and do not alter the internal gene coherence. However, biophysical constraints are required to drive phenotypic commitment in an appropriate way, compatible with physiological requirements, given that absence of gravity foster cells to oscillate between different attractor states, thus preventing them to acquire a exclusive phenotype. This is a proof-of-concept of the adaptive properties of gene-expression networks supporting very different phenotypes by coordinated ‘profile preserving’ modifications.

Original languageEnglish
Article number27
Journalnpj Microgravity
Issue number1
Publication statusPublished - Dec 1 2019

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Materials Science (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Agricultural and Biological Sciences (miscellaneous)
  • Physics and Astronomy (miscellaneous)
  • Space and Planetary Science


Dive into the research topics of 'Phenotypic transitions enacted by simulated microgravity do not alter coherence in gene transcription profile'. Together they form a unique fingerprint.

Cite this