Physiological effects of high-flow oxygen in tracheostomized patients

Daniele Natalini, Domenico L Grieco, Maria Teresa Santantonio, Lucrezia Mincione, Flavia Toni, Gian Marco Anzellotti, Davide Eleuteri, Pierluigi Di Giannatale, Massimo Antonelli, Salvatore Maurizio Maggiore

Research output: Contribution to journalArticle

Abstract

BACKGROUND: High-flow oxygen therapy via nasal cannula (HFOTNASAL) increases airway pressure, ameliorates oxygenation and reduces work of breathing. High-flow oxygen can be delivered through tracheostomy (HFOTTRACHEAL), but its physiological effects have not been systematically described. We conducted a cross-over study to elucidate the effects of increasing flow rates of HFOTTRACHEAL on gas exchange, respiratory rate and endotracheal pressure and to compare lower airway pressure produced by HFOTNASAL and HFOTTRACHEAL. METHODS: Twenty-six tracheostomized patients underwent standard oxygen therapy through a conventional heat and moisture exchanger, and then HFOTTRACHEAL through a heated humidifier, with gas flow set at 10, 30 and 50 L/min. Each step lasted 30 min; gas flow sequence during HFOTTRACHEAL was randomized. In five patients, measurements were repeated during HFOTTRACHEAL before tracheostomy decannulation and immediately after during HFOTNASAL. In each step, arterial blood gases, respiratory rate, and tracheal pressure were measured.

RESULTS: During HFOTTRACHEAL, PaO2/FiO2 ratio and tracheal expiratory pressure slightly increased proportionally to gas flow. The mean [95% confidence interval] expiratory pressure raise induced by 10-L/min increase in flow was 0.2 [0.1-0.2] cmH2O (ρ = 0.77, p < 0.001). Compared to standard oxygen, HFOTTRACHEAL limited the negative inspiratory swing in tracheal pressure; at 50 L/min, but not with other settings, HFOTTRACHEAL increased mean tracheal expiratory pressure by (mean difference [95% CI]) 0.4 [0.3-0.6] cmH2O, peak tracheal expiratory pressure by 0.4 [0.2-0.6] cmH2O, improved PaO2/FiO2 ratio by 40 [8-71] mmHg, and reduced respiratory rate by 1.9 [0.3-3.6] breaths/min without PaCO2 changes. As compared to HFOTTRACHEAL, HFOTNASAL produced higher tracheal mean and peak expiratory pressure (at 50 L/min, mean difference [95% CI]: 3 [1-5] cmH2O and 4 [1-7] cmH2O, respectively).

CONCLUSIONS: As compared to standard oxygen, 50 L/min of HFOTTRACHEAL are needed to improve oxygenation, reduce respiratory rate and provide small degree of positive airway expiratory pressure, which, however, is significantly lower than the one produced by HFOTNASAL.

Original languageEnglish
Pages (from-to)114
JournalAnnals of Intensive Care
Volume9
Issue number1
DOIs
Publication statusPublished - Oct 7 2019

Fingerprint Dive into the research topics of 'Physiological effects of high-flow oxygen in tracheostomized patients'. Together they form a unique fingerprint.

  • Cite this

    Natalini, D., Grieco, D. L., Santantonio, M. T., Mincione, L., Toni, F., Anzellotti, G. M., Eleuteri, D., Di Giannatale, P., Antonelli, M., & Maggiore, S. M. (2019). Physiological effects of high-flow oxygen in tracheostomized patients. Annals of Intensive Care, 9(1), 114. https://doi.org/10.1186/s13613-019-0591-y