Plasmatic and chamber-specific modulation of cardiac microRNAs in an acute model of DOX-induced cardiotoxicity

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Background: Doxorubicin (DOX) is a chemotherapeutic drug limited in its usefulness by an adverse side effect, cardiotoxicity. The mechanisms leading to this detrimental occurrence are not completely clear, and lately many authors focused their attention on the possible role of microRNAs (miRNAs), small regulators of cardiovascular functions, in this phenomenon. Notably, these molecules recently emerged also as potential circulating biomarkers of several cardiac diseases. Thus, the aim of this study was the simultaneous investigation of circulating and cardiac tissue miRNAs expression upon DOX treatment in vivo. Methods: Twenty C57BL/6 female mice were administered with 24 mg/Kg cumulative dose of DOX or saline (CTRL) for 2 weeks. Echocardiography was performed at baseline and at the end of treatment (T1). Plasma and heart samples were collected at T1, separating atria from left (LV) and right (RV) ventricles, and miRNAs expression was tested by RT-qPCR-based arrays. All putatively DOX-regulated candidates were then validated by single assays in vivo and then evaluated also in murine immortalized cardiomyocytes (HL-1) treated with 1 μM DOX for 24 h. In the end, bioinformatics target prediction was performed for all DOX-miRNAs. Results: Cardiotoxicity onset was diagnosed upon impairment of six cardiac functional parameters in DOX-treated mice at T1. Samples collection, followed by screening and validation steps, identified eleven miRNAs dysregulated by the drug in plasma, while seven resulted as altered in separate heart chambers. Interestingly, miR-34a-5p and miR-451a showed a dysregulation in both plasma and tissue samples of DOX-administered animals, whereas five additional miRNAs presented chamber specific modulation. Of note, in vitro experiments showed a very modest overlap with in vivo results. Bioinformatics prediction analysis performed on miR-34a-5p and miR-451a identified several putative targets presenting no significant association with cardiotoxicity. Anyhow, the same analyses, conducted by combining all miRNAs regulated by DOX in each heart chamber, evidenced a possible dysregulation of the adherens junctions gene network, known to be involved in the onset and progression of dilated cardiomyopathy, an established detrimental side effect of the drug. Conclusions: This is the first work investigating miRNAs regulation by DOX both in plasma and heart districts of treated animals. Our results indicate a strong association of miR-34a-5p and miR-451a to DOX-induced cardiotoxicity. In addition, the observed altered expression of diverse miRNAs in separated cardiac chambers hints at a specific response to the drug, implying the existence of different players and pathways leading to dysfunction onset.

Original languageEnglish
Pages (from-to)1-8
Number of pages8
JournalBiomedicine and Pharmacotherapy
Volume110
DOIs
Publication statusPublished - Feb 1 2019

Fingerprint

MicroRNAs
Doxorubicin
Computational Biology
Cardiotoxicity
Pharmaceutical Preparations
Adherens Junctions
Gene Regulatory Networks
Dilated Cardiomyopathy
Heart Atria
Drug-Related Side Effects and Adverse Reactions
Cardiac Myocytes
Heart Ventricles
Echocardiography
Heart Diseases
Biomarkers

Keywords

  • Biomarkers
  • Cardiotoxicity
  • Circulating microRNA
  • Doxorubicin
  • Heart chambers
  • microRNAs

ASJC Scopus subject areas

  • Pharmacology

Cite this

@article{1a0ba7f0c7b741899020a152f038beec,
title = "Plasmatic and chamber-specific modulation of cardiac microRNAs in an acute model of DOX-induced cardiotoxicity",
abstract = "Background: Doxorubicin (DOX) is a chemotherapeutic drug limited in its usefulness by an adverse side effect, cardiotoxicity. The mechanisms leading to this detrimental occurrence are not completely clear, and lately many authors focused their attention on the possible role of microRNAs (miRNAs), small regulators of cardiovascular functions, in this phenomenon. Notably, these molecules recently emerged also as potential circulating biomarkers of several cardiac diseases. Thus, the aim of this study was the simultaneous investigation of circulating and cardiac tissue miRNAs expression upon DOX treatment in vivo. Methods: Twenty C57BL/6 female mice were administered with 24 mg/Kg cumulative dose of DOX or saline (CTRL) for 2 weeks. Echocardiography was performed at baseline and at the end of treatment (T1). Plasma and heart samples were collected at T1, separating atria from left (LV) and right (RV) ventricles, and miRNAs expression was tested by RT-qPCR-based arrays. All putatively DOX-regulated candidates were then validated by single assays in vivo and then evaluated also in murine immortalized cardiomyocytes (HL-1) treated with 1 μM DOX for 24 h. In the end, bioinformatics target prediction was performed for all DOX-miRNAs. Results: Cardiotoxicity onset was diagnosed upon impairment of six cardiac functional parameters in DOX-treated mice at T1. Samples collection, followed by screening and validation steps, identified eleven miRNAs dysregulated by the drug in plasma, while seven resulted as altered in separate heart chambers. Interestingly, miR-34a-5p and miR-451a showed a dysregulation in both plasma and tissue samples of DOX-administered animals, whereas five additional miRNAs presented chamber specific modulation. Of note, in vitro experiments showed a very modest overlap with in vivo results. Bioinformatics prediction analysis performed on miR-34a-5p and miR-451a identified several putative targets presenting no significant association with cardiotoxicity. Anyhow, the same analyses, conducted by combining all miRNAs regulated by DOX in each heart chamber, evidenced a possible dysregulation of the adherens junctions gene network, known to be involved in the onset and progression of dilated cardiomyopathy, an established detrimental side effect of the drug. Conclusions: This is the first work investigating miRNAs regulation by DOX both in plasma and heart districts of treated animals. Our results indicate a strong association of miR-34a-5p and miR-451a to DOX-induced cardiotoxicity. In addition, the observed altered expression of diverse miRNAs in separated cardiac chambers hints at a specific response to the drug, implying the existence of different players and pathways leading to dysfunction onset.",
keywords = "Biomarkers, Cardiotoxicity, Circulating microRNA, Doxorubicin, Heart chambers, microRNAs",
author = "Sonia Gioffr{\'e} and Veronica Ricci and Chiara Vavassori and Clarissa Ruggeri and Mattia Chiesa and Ivana Alfieri and Silvia Zorzan and Marta Buzzetti and Giuseppina Milano and Alessandro Scopece and Laura Castiglioni and Luigi Sironi and Giulio Pompilio and Colombo, {Gualtiero I.} and Yuri D'Alessandra",
year = "2019",
month = "2",
day = "1",
doi = "10.1016/j.biopha.2018.11.042",
language = "English",
volume = "110",
pages = "1--8",
journal = "Biomedicine and Pharmacotherapy",
issn = "0753-3322",
publisher = "Elsevier Masson SAS",

}

TY - JOUR

T1 - Plasmatic and chamber-specific modulation of cardiac microRNAs in an acute model of DOX-induced cardiotoxicity

AU - Gioffré, Sonia

AU - Ricci, Veronica

AU - Vavassori, Chiara

AU - Ruggeri, Clarissa

AU - Chiesa, Mattia

AU - Alfieri, Ivana

AU - Zorzan, Silvia

AU - Buzzetti, Marta

AU - Milano, Giuseppina

AU - Scopece, Alessandro

AU - Castiglioni, Laura

AU - Sironi, Luigi

AU - Pompilio, Giulio

AU - Colombo, Gualtiero I.

AU - D'Alessandra, Yuri

PY - 2019/2/1

Y1 - 2019/2/1

N2 - Background: Doxorubicin (DOX) is a chemotherapeutic drug limited in its usefulness by an adverse side effect, cardiotoxicity. The mechanisms leading to this detrimental occurrence are not completely clear, and lately many authors focused their attention on the possible role of microRNAs (miRNAs), small regulators of cardiovascular functions, in this phenomenon. Notably, these molecules recently emerged also as potential circulating biomarkers of several cardiac diseases. Thus, the aim of this study was the simultaneous investigation of circulating and cardiac tissue miRNAs expression upon DOX treatment in vivo. Methods: Twenty C57BL/6 female mice were administered with 24 mg/Kg cumulative dose of DOX or saline (CTRL) for 2 weeks. Echocardiography was performed at baseline and at the end of treatment (T1). Plasma and heart samples were collected at T1, separating atria from left (LV) and right (RV) ventricles, and miRNAs expression was tested by RT-qPCR-based arrays. All putatively DOX-regulated candidates were then validated by single assays in vivo and then evaluated also in murine immortalized cardiomyocytes (HL-1) treated with 1 μM DOX for 24 h. In the end, bioinformatics target prediction was performed for all DOX-miRNAs. Results: Cardiotoxicity onset was diagnosed upon impairment of six cardiac functional parameters in DOX-treated mice at T1. Samples collection, followed by screening and validation steps, identified eleven miRNAs dysregulated by the drug in plasma, while seven resulted as altered in separate heart chambers. Interestingly, miR-34a-5p and miR-451a showed a dysregulation in both plasma and tissue samples of DOX-administered animals, whereas five additional miRNAs presented chamber specific modulation. Of note, in vitro experiments showed a very modest overlap with in vivo results. Bioinformatics prediction analysis performed on miR-34a-5p and miR-451a identified several putative targets presenting no significant association with cardiotoxicity. Anyhow, the same analyses, conducted by combining all miRNAs regulated by DOX in each heart chamber, evidenced a possible dysregulation of the adherens junctions gene network, known to be involved in the onset and progression of dilated cardiomyopathy, an established detrimental side effect of the drug. Conclusions: This is the first work investigating miRNAs regulation by DOX both in plasma and heart districts of treated animals. Our results indicate a strong association of miR-34a-5p and miR-451a to DOX-induced cardiotoxicity. In addition, the observed altered expression of diverse miRNAs in separated cardiac chambers hints at a specific response to the drug, implying the existence of different players and pathways leading to dysfunction onset.

AB - Background: Doxorubicin (DOX) is a chemotherapeutic drug limited in its usefulness by an adverse side effect, cardiotoxicity. The mechanisms leading to this detrimental occurrence are not completely clear, and lately many authors focused their attention on the possible role of microRNAs (miRNAs), small regulators of cardiovascular functions, in this phenomenon. Notably, these molecules recently emerged also as potential circulating biomarkers of several cardiac diseases. Thus, the aim of this study was the simultaneous investigation of circulating and cardiac tissue miRNAs expression upon DOX treatment in vivo. Methods: Twenty C57BL/6 female mice were administered with 24 mg/Kg cumulative dose of DOX or saline (CTRL) for 2 weeks. Echocardiography was performed at baseline and at the end of treatment (T1). Plasma and heart samples were collected at T1, separating atria from left (LV) and right (RV) ventricles, and miRNAs expression was tested by RT-qPCR-based arrays. All putatively DOX-regulated candidates were then validated by single assays in vivo and then evaluated also in murine immortalized cardiomyocytes (HL-1) treated with 1 μM DOX for 24 h. In the end, bioinformatics target prediction was performed for all DOX-miRNAs. Results: Cardiotoxicity onset was diagnosed upon impairment of six cardiac functional parameters in DOX-treated mice at T1. Samples collection, followed by screening and validation steps, identified eleven miRNAs dysregulated by the drug in plasma, while seven resulted as altered in separate heart chambers. Interestingly, miR-34a-5p and miR-451a showed a dysregulation in both plasma and tissue samples of DOX-administered animals, whereas five additional miRNAs presented chamber specific modulation. Of note, in vitro experiments showed a very modest overlap with in vivo results. Bioinformatics prediction analysis performed on miR-34a-5p and miR-451a identified several putative targets presenting no significant association with cardiotoxicity. Anyhow, the same analyses, conducted by combining all miRNAs regulated by DOX in each heart chamber, evidenced a possible dysregulation of the adherens junctions gene network, known to be involved in the onset and progression of dilated cardiomyopathy, an established detrimental side effect of the drug. Conclusions: This is the first work investigating miRNAs regulation by DOX both in plasma and heart districts of treated animals. Our results indicate a strong association of miR-34a-5p and miR-451a to DOX-induced cardiotoxicity. In addition, the observed altered expression of diverse miRNAs in separated cardiac chambers hints at a specific response to the drug, implying the existence of different players and pathways leading to dysfunction onset.

KW - Biomarkers

KW - Cardiotoxicity

KW - Circulating microRNA

KW - Doxorubicin

KW - Heart chambers

KW - microRNAs

UR - http://www.scopus.com/inward/record.url?scp=85056626454&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056626454&partnerID=8YFLogxK

U2 - 10.1016/j.biopha.2018.11.042

DO - 10.1016/j.biopha.2018.11.042

M3 - Article

VL - 110

SP - 1

EP - 8

JO - Biomedicine and Pharmacotherapy

JF - Biomedicine and Pharmacotherapy

SN - 0753-3322

ER -