Platelet-rich plasma affects bacterial growth in vitro

Erminia Mariani, Giuseppe Filardo, Valentina Canella, Andrea Berlingeri, Alessandra Bielli, Luca Cattini, Maria Paola Landini, Elizaveta Kon, Maurilio Marcacci, Andrea Facchini

Research output: Contribution to journalArticle

Abstract

Background aims: Platelet-rich plasma (PRP), a blood derivative rich in platelets, is a relatively new technique used in tissue regeneration and engineering. The increased quantity of platelets makes this formulation of considerable value for their role in tissue healing and microbicidal activity. This activity was investigated against five of the most important strains involved in nosocomial infections (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Streptococcus faecalis) to understand the prophylactic role of pure (P)-PRP. Microbicidal proteins released from activated P-PRP platelets were also determined. Methods: The microbicidal activity of P-PRP and platelet-poor plasma (PPP) was evaluated on different concentrations of the five bacterial strains incubated for 1, 2, 4 and 18 h and plated on agar for 18-24 h. P-PRP and PPP-released microbicidal proteins were evaluated by means of multiplex bead-based immunoassays. Results: P-PRP and PPP inhibited bacterial growth for up to 2 h of incubation. The effect of P-PRP was significantly higher than that of PPP, mainly at the low seeding concentrations and/or shorter incubation times, depending on the bacterial strain. Chemokine (C-C motif) ligand-3, chemokine (C-C motif) ligand-5 and chemokine (C-X-C motif) ligand-1 were the molecules mostly related to Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus faecalis inhibition. Escherichia coli and Klebsiella pneumoniae were less influenced. Conclusions: The present results show that P-PRP might supply an early protection against bacterial contaminations during surgical interventions because the inhibitory activity is already evident from the first hour of treatment, which suggests that physiological molecules supplied in loco might be important in the time frame needed for the activation of the innate immune response.

Original languageEnglish
Pages (from-to)1294-1304
Number of pages11
JournalCytotherapy
Volume16
Issue number9
DOIs
Publication statusPublished - 2014

    Fingerprint

Keywords

  • Bacterial growth
  • Kinocidins
  • Microbicidal activity
  • Microbicidal proteins
  • Nosocomial infections
  • Platelet-rich plasma

ASJC Scopus subject areas

  • Immunology
  • Immunology and Allergy
  • Oncology
  • Genetics(clinical)
  • Transplantation
  • Cancer Research
  • Cell Biology
  • Medicine(all)

Cite this

Mariani, E., Filardo, G., Canella, V., Berlingeri, A., Bielli, A., Cattini, L., Landini, M. P., Kon, E., Marcacci, M., & Facchini, A. (2014). Platelet-rich plasma affects bacterial growth in vitro. Cytotherapy, 16(9), 1294-1304. https://doi.org/10.1016/j.jcyt.2014.06.003