Platelet rich plasma therapy: inflammatory molecules involved in tissue healing.

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

Inflammation represents a fundamental aspect of the healing process. Besides their primary role in hemostasis, platelets play an active role in the immunological and inflammatory aspect of tissue healing. Indeed , they can be directly involved in the inflammatory response by the production and release of several inflammatory mediators, including a variety of cytokines, such as TGF-beta, IL-1 beta, CD40L, and chemokines, such as CXCL7, CXCL4, CXCL4L1, CCl5, CXCL1, CXCL8, CXCL5, CXCL12, CCL2, CCL3. Platelet are not only a source of several chemokine involved in the inflammatory response and tissue healing, but they also express chemokine receptors, in particular CCR1 CCR3 CCR4 and CXCR4, thus being able to being able to regulate the inflammatory response associated to the healing process. However, this local inflammation must be taken under control, and platelets can prevent the excess of leukocytes recruitment by anti-inflammatory cytokines, such as TGF-beta. For this biological properties of platelets, platelet rich plasma therapy (PRP) is considered an innovative and promising approach that has been extended to many field of medicine, ranging from non-union defects, bone fractures, spinal fusion, bone implant and osteointegration, joint arthroplasty, to the treatment of several traumatic or degenerative pathologies of tendons, cartilage and ligaments.

Original languageEnglish
JournalJournal of Biological Regulators and Homeostatic Agents
Volume26
Issue number2 Suppl 1
Publication statusPublished - Apr 2012

Fingerprint

Platelet-Rich Plasma
Blood Platelets
Cytokines
Inflammation
Transforming Growth Factor beta1
CC Chemokines
Spinal Fusion
CD40 Ligand
Chemokine Receptors
Bone Fractures
Therapeutics
Hemostasis
Interleukin-1beta
Chemokines
Ligaments
Arthroplasty
Transforming Growth Factor beta
Tendons
Cartilage
Leukocytes

ASJC Scopus subject areas

  • Oncology
  • Endocrinology, Diabetes and Metabolism
  • Physiology (medical)
  • Immunology and Allergy
  • Immunology
  • Endocrinology
  • Physiology
  • Cancer Research

Cite this

@article{a82fade66a2b40079e791b8a222805db,
title = "Platelet rich plasma therapy: inflammatory molecules involved in tissue healing.",
abstract = "Inflammation represents a fundamental aspect of the healing process. Besides their primary role in hemostasis, platelets play an active role in the immunological and inflammatory aspect of tissue healing. Indeed , they can be directly involved in the inflammatory response by the production and release of several inflammatory mediators, including a variety of cytokines, such as TGF-beta, IL-1 beta, CD40L, and chemokines, such as CXCL7, CXCL4, CXCL4L1, CCl5, CXCL1, CXCL8, CXCL5, CXCL12, CCL2, CCL3. Platelet are not only a source of several chemokine involved in the inflammatory response and tissue healing, but they also express chemokine receptors, in particular CCR1 CCR3 CCR4 and CXCR4, thus being able to being able to regulate the inflammatory response associated to the healing process. However, this local inflammation must be taken under control, and platelets can prevent the excess of leukocytes recruitment by anti-inflammatory cytokines, such as TGF-beta. For this biological properties of platelets, platelet rich plasma therapy (PRP) is considered an innovative and promising approach that has been extended to many field of medicine, ranging from non-union defects, bone fractures, spinal fusion, bone implant and osteointegration, joint arthroplasty, to the treatment of several traumatic or degenerative pathologies of tendons, cartilage and ligaments.",
author = "E. Galliera and Corsi, {M. M.} and G. Banfi",
year = "2012",
month = "4",
language = "English",
volume = "26",
journal = "Journal of Biological Regulators and Homeostatic Agents",
issn = "0393-974X",
publisher = "Biolife s.a.s.",
number = "2 Suppl 1",

}

TY - JOUR

T1 - Platelet rich plasma therapy

T2 - inflammatory molecules involved in tissue healing.

AU - Galliera, E.

AU - Corsi, M. M.

AU - Banfi, G.

PY - 2012/4

Y1 - 2012/4

N2 - Inflammation represents a fundamental aspect of the healing process. Besides their primary role in hemostasis, platelets play an active role in the immunological and inflammatory aspect of tissue healing. Indeed , they can be directly involved in the inflammatory response by the production and release of several inflammatory mediators, including a variety of cytokines, such as TGF-beta, IL-1 beta, CD40L, and chemokines, such as CXCL7, CXCL4, CXCL4L1, CCl5, CXCL1, CXCL8, CXCL5, CXCL12, CCL2, CCL3. Platelet are not only a source of several chemokine involved in the inflammatory response and tissue healing, but they also express chemokine receptors, in particular CCR1 CCR3 CCR4 and CXCR4, thus being able to being able to regulate the inflammatory response associated to the healing process. However, this local inflammation must be taken under control, and platelets can prevent the excess of leukocytes recruitment by anti-inflammatory cytokines, such as TGF-beta. For this biological properties of platelets, platelet rich plasma therapy (PRP) is considered an innovative and promising approach that has been extended to many field of medicine, ranging from non-union defects, bone fractures, spinal fusion, bone implant and osteointegration, joint arthroplasty, to the treatment of several traumatic or degenerative pathologies of tendons, cartilage and ligaments.

AB - Inflammation represents a fundamental aspect of the healing process. Besides their primary role in hemostasis, platelets play an active role in the immunological and inflammatory aspect of tissue healing. Indeed , they can be directly involved in the inflammatory response by the production and release of several inflammatory mediators, including a variety of cytokines, such as TGF-beta, IL-1 beta, CD40L, and chemokines, such as CXCL7, CXCL4, CXCL4L1, CCl5, CXCL1, CXCL8, CXCL5, CXCL12, CCL2, CCL3. Platelet are not only a source of several chemokine involved in the inflammatory response and tissue healing, but they also express chemokine receptors, in particular CCR1 CCR3 CCR4 and CXCR4, thus being able to being able to regulate the inflammatory response associated to the healing process. However, this local inflammation must be taken under control, and platelets can prevent the excess of leukocytes recruitment by anti-inflammatory cytokines, such as TGF-beta. For this biological properties of platelets, platelet rich plasma therapy (PRP) is considered an innovative and promising approach that has been extended to many field of medicine, ranging from non-union defects, bone fractures, spinal fusion, bone implant and osteointegration, joint arthroplasty, to the treatment of several traumatic or degenerative pathologies of tendons, cartilage and ligaments.

UR - http://www.scopus.com/inward/record.url?scp=84878878314&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878878314&partnerID=8YFLogxK

M3 - Article

C2 - 23648197

AN - SCOPUS:84878878314

VL - 26

JO - Journal of Biological Regulators and Homeostatic Agents

JF - Journal of Biological Regulators and Homeostatic Agents

SN - 0393-974X

IS - 2 Suppl 1

ER -