Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog

M. Pagani, F. Lombardi, S. Guzzetti, O. Rimoldi, R. Furlan, P. Pizzinelli, G. Sandrone, G. Malfatto, S. Dell'Orto, E. Piccaluga

Research output: Contribution to journalArticle

3280 Citations (Scopus)

Abstract

In 57 normal subjects (age 20-60 years), we analyzed the spontaneous beat-to-beat oscillation in R-R interval during control recumbent position, 90° upright tilt, controlled respiration (n = 16) and acute (n = 10) and chronic (n = 12) β-adrenergic receptor blockade. Automatic computer analysis provided the autoregressive power spectral density, as well as the number and relative power of the individual components. The power spectral density of R-R interval variability contained two major components in power, a high frequency at ~ 0.25 Hz and a low frequency at ~ 0.1 Hz, with a normalized low frequency: high frequency ratio of 3.6 ± 0.7. With tilt, the low-frequency component became largely predominant (90 ± 1%) with a low frequency: high frequency ratio of 21 ± 4. Acute β-adrenergic receptor blockade (0.2 mg/kg IV propranolol) increased variance at rest and markedly blunted the increase in low frequency and low frequency: high frequency ratio induced by tilt. Chronic β-adrenergic receptor blockade (0.6 mg/kg p.o. propranolol, t.i.d.), in addition, reduced low frequency and increased high frequency at rest, while limiting the low frequency: high frequency ratio increase produced by tilt. Controlled respiration produced at rest a marked increase in the high-frequency component, with a reduction of the low-frequency component and of the low frequency: high frequency ratio (0.7 ± 0.1); during tilt, the increase in the low frequency: high frequency ratio (8.3 ± 1.6) was significantly smaller. In seven additional subjects in whom direct high-fidelity arterial pressure was recorded, simultaneous R-R interval and arterial pressure variabilities were examined at rest and during tilt. Also, the power spectral density of arterial pressure variability contained two major components, with a relative low frequency: high frequency ratio at rest of 2.8 ± 0.7, which became 17 ± 5 with tilt. These power spectral density components were numerically similar to those observed in R-R variability. Thus, invasive and noninvasive studies provided similar results. More direct information on the role of cardiac sympathetic nerves on R-R and arterial pressure variabilities was derived from a group of experiments in conscious dogs before and after bilateral stellectomy. Under control conditions, high frequency was predominant and low frequency was very small or absent, owing to a predominant vagal tone. During a 9% decrease in arterial pressure obtained with IV nitroglycerin, there was a marked increase in low frequency, as a result of reflex sympathetic activation. Bilateral stellectomy prevented this low-frequency increase in R-R but not in arterial pressure autospectra, indicating that sympathetic nerves to the heart are instrumental in the genesis of low-frequency oscillations in R-R interval.

Original languageEnglish
Pages (from-to)178-193
Number of pages16
JournalCirculation Research
Volume59
Issue number2
Publication statusPublished - 1986

Fingerprint

Arterial Pressure
Heart Rate
Dogs
Adrenergic Receptors
Propranolol
Respiration
Nitroglycerin
Reflex
Power (Psychology)

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Cite this

Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. / Pagani, M.; Lombardi, F.; Guzzetti, S.; Rimoldi, O.; Furlan, R.; Pizzinelli, P.; Sandrone, G.; Malfatto, G.; Dell'Orto, S.; Piccaluga, E.

In: Circulation Research, Vol. 59, No. 2, 1986, p. 178-193.

Research output: Contribution to journalArticle

Pagani, M, Lombardi, F, Guzzetti, S, Rimoldi, O, Furlan, R, Pizzinelli, P, Sandrone, G, Malfatto, G, Dell'Orto, S & Piccaluga, E 1986, 'Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog', Circulation Research, vol. 59, no. 2, pp. 178-193.
Pagani, M. ; Lombardi, F. ; Guzzetti, S. ; Rimoldi, O. ; Furlan, R. ; Pizzinelli, P. ; Sandrone, G. ; Malfatto, G. ; Dell'Orto, S. ; Piccaluga, E. / Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. In: Circulation Research. 1986 ; Vol. 59, No. 2. pp. 178-193.
@article{cbdda39ece93402ab6c78e29ec96021e,
title = "Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog",
abstract = "In 57 normal subjects (age 20-60 years), we analyzed the spontaneous beat-to-beat oscillation in R-R interval during control recumbent position, 90° upright tilt, controlled respiration (n = 16) and acute (n = 10) and chronic (n = 12) β-adrenergic receptor blockade. Automatic computer analysis provided the autoregressive power spectral density, as well as the number and relative power of the individual components. The power spectral density of R-R interval variability contained two major components in power, a high frequency at ~ 0.25 Hz and a low frequency at ~ 0.1 Hz, with a normalized low frequency: high frequency ratio of 3.6 ± 0.7. With tilt, the low-frequency component became largely predominant (90 ± 1{\%}) with a low frequency: high frequency ratio of 21 ± 4. Acute β-adrenergic receptor blockade (0.2 mg/kg IV propranolol) increased variance at rest and markedly blunted the increase in low frequency and low frequency: high frequency ratio induced by tilt. Chronic β-adrenergic receptor blockade (0.6 mg/kg p.o. propranolol, t.i.d.), in addition, reduced low frequency and increased high frequency at rest, while limiting the low frequency: high frequency ratio increase produced by tilt. Controlled respiration produced at rest a marked increase in the high-frequency component, with a reduction of the low-frequency component and of the low frequency: high frequency ratio (0.7 ± 0.1); during tilt, the increase in the low frequency: high frequency ratio (8.3 ± 1.6) was significantly smaller. In seven additional subjects in whom direct high-fidelity arterial pressure was recorded, simultaneous R-R interval and arterial pressure variabilities were examined at rest and during tilt. Also, the power spectral density of arterial pressure variability contained two major components, with a relative low frequency: high frequency ratio at rest of 2.8 ± 0.7, which became 17 ± 5 with tilt. These power spectral density components were numerically similar to those observed in R-R variability. Thus, invasive and noninvasive studies provided similar results. More direct information on the role of cardiac sympathetic nerves on R-R and arterial pressure variabilities was derived from a group of experiments in conscious dogs before and after bilateral stellectomy. Under control conditions, high frequency was predominant and low frequency was very small or absent, owing to a predominant vagal tone. During a 9{\%} decrease in arterial pressure obtained with IV nitroglycerin, there was a marked increase in low frequency, as a result of reflex sympathetic activation. Bilateral stellectomy prevented this low-frequency increase in R-R but not in arterial pressure autospectra, indicating that sympathetic nerves to the heart are instrumental in the genesis of low-frequency oscillations in R-R interval.",
author = "M. Pagani and F. Lombardi and S. Guzzetti and O. Rimoldi and R. Furlan and P. Pizzinelli and G. Sandrone and G. Malfatto and S. Dell'Orto and E. Piccaluga",
year = "1986",
language = "English",
volume = "59",
pages = "178--193",
journal = "Circulation Research",
issn = "0009-7330",
publisher = "Lippincott Williams and Wilkins",
number = "2",

}

TY - JOUR

T1 - Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog

AU - Pagani, M.

AU - Lombardi, F.

AU - Guzzetti, S.

AU - Rimoldi, O.

AU - Furlan, R.

AU - Pizzinelli, P.

AU - Sandrone, G.

AU - Malfatto, G.

AU - Dell'Orto, S.

AU - Piccaluga, E.

PY - 1986

Y1 - 1986

N2 - In 57 normal subjects (age 20-60 years), we analyzed the spontaneous beat-to-beat oscillation in R-R interval during control recumbent position, 90° upright tilt, controlled respiration (n = 16) and acute (n = 10) and chronic (n = 12) β-adrenergic receptor blockade. Automatic computer analysis provided the autoregressive power spectral density, as well as the number and relative power of the individual components. The power spectral density of R-R interval variability contained two major components in power, a high frequency at ~ 0.25 Hz and a low frequency at ~ 0.1 Hz, with a normalized low frequency: high frequency ratio of 3.6 ± 0.7. With tilt, the low-frequency component became largely predominant (90 ± 1%) with a low frequency: high frequency ratio of 21 ± 4. Acute β-adrenergic receptor blockade (0.2 mg/kg IV propranolol) increased variance at rest and markedly blunted the increase in low frequency and low frequency: high frequency ratio induced by tilt. Chronic β-adrenergic receptor blockade (0.6 mg/kg p.o. propranolol, t.i.d.), in addition, reduced low frequency and increased high frequency at rest, while limiting the low frequency: high frequency ratio increase produced by tilt. Controlled respiration produced at rest a marked increase in the high-frequency component, with a reduction of the low-frequency component and of the low frequency: high frequency ratio (0.7 ± 0.1); during tilt, the increase in the low frequency: high frequency ratio (8.3 ± 1.6) was significantly smaller. In seven additional subjects in whom direct high-fidelity arterial pressure was recorded, simultaneous R-R interval and arterial pressure variabilities were examined at rest and during tilt. Also, the power spectral density of arterial pressure variability contained two major components, with a relative low frequency: high frequency ratio at rest of 2.8 ± 0.7, which became 17 ± 5 with tilt. These power spectral density components were numerically similar to those observed in R-R variability. Thus, invasive and noninvasive studies provided similar results. More direct information on the role of cardiac sympathetic nerves on R-R and arterial pressure variabilities was derived from a group of experiments in conscious dogs before and after bilateral stellectomy. Under control conditions, high frequency was predominant and low frequency was very small or absent, owing to a predominant vagal tone. During a 9% decrease in arterial pressure obtained with IV nitroglycerin, there was a marked increase in low frequency, as a result of reflex sympathetic activation. Bilateral stellectomy prevented this low-frequency increase in R-R but not in arterial pressure autospectra, indicating that sympathetic nerves to the heart are instrumental in the genesis of low-frequency oscillations in R-R interval.

AB - In 57 normal subjects (age 20-60 years), we analyzed the spontaneous beat-to-beat oscillation in R-R interval during control recumbent position, 90° upright tilt, controlled respiration (n = 16) and acute (n = 10) and chronic (n = 12) β-adrenergic receptor blockade. Automatic computer analysis provided the autoregressive power spectral density, as well as the number and relative power of the individual components. The power spectral density of R-R interval variability contained two major components in power, a high frequency at ~ 0.25 Hz and a low frequency at ~ 0.1 Hz, with a normalized low frequency: high frequency ratio of 3.6 ± 0.7. With tilt, the low-frequency component became largely predominant (90 ± 1%) with a low frequency: high frequency ratio of 21 ± 4. Acute β-adrenergic receptor blockade (0.2 mg/kg IV propranolol) increased variance at rest and markedly blunted the increase in low frequency and low frequency: high frequency ratio induced by tilt. Chronic β-adrenergic receptor blockade (0.6 mg/kg p.o. propranolol, t.i.d.), in addition, reduced low frequency and increased high frequency at rest, while limiting the low frequency: high frequency ratio increase produced by tilt. Controlled respiration produced at rest a marked increase in the high-frequency component, with a reduction of the low-frequency component and of the low frequency: high frequency ratio (0.7 ± 0.1); during tilt, the increase in the low frequency: high frequency ratio (8.3 ± 1.6) was significantly smaller. In seven additional subjects in whom direct high-fidelity arterial pressure was recorded, simultaneous R-R interval and arterial pressure variabilities were examined at rest and during tilt. Also, the power spectral density of arterial pressure variability contained two major components, with a relative low frequency: high frequency ratio at rest of 2.8 ± 0.7, which became 17 ± 5 with tilt. These power spectral density components were numerically similar to those observed in R-R variability. Thus, invasive and noninvasive studies provided similar results. More direct information on the role of cardiac sympathetic nerves on R-R and arterial pressure variabilities was derived from a group of experiments in conscious dogs before and after bilateral stellectomy. Under control conditions, high frequency was predominant and low frequency was very small or absent, owing to a predominant vagal tone. During a 9% decrease in arterial pressure obtained with IV nitroglycerin, there was a marked increase in low frequency, as a result of reflex sympathetic activation. Bilateral stellectomy prevented this low-frequency increase in R-R but not in arterial pressure autospectra, indicating that sympathetic nerves to the heart are instrumental in the genesis of low-frequency oscillations in R-R interval.

UR - http://www.scopus.com/inward/record.url?scp=84934177971&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84934177971&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84934177971

VL - 59

SP - 178

EP - 193

JO - Circulation Research

JF - Circulation Research

SN - 0009-7330

IS - 2

ER -