TY - JOUR
T1 - Pre-treatment and in-vivo dosimetry of Helical Tomotherapy treatment plans using the dosimetry Check system
AU - Mezzenga, E.
AU - Cagni, E.
AU - Botti, A.
AU - Orlandi, M.
AU - Iori, M.
PY - 2014
Y1 - 2014
N2 - Dosimetry Check (DC) is the world's first commercially available software that provides patient-specific pre-treatment (PTD) and in-vivo transit (IVD) dose quality assurance of static and rotational intensity-modulated radiotherapy treatments. To investigate the feasibility of replacing pre-treatment verification with in vivo dosimetry for Helical Tomotherapy (HT), the commissioning and the application of the DC software was realised. Dose distributions were reconstructed from Mega Voltage Computed Tomography (MVCT) detectors, inside phantoms or patients for a total number of 6 treatment plans. Planned, reconstructed MVCT dose and measurements using ionisation chambers and a matrix detector inserted in cylindrical and octagonal phantoms, respectively, were compared at the isocenter and in two dimensions using the γ2D and γ10-index (3%/3 mm). The dose reconstruction PTD and IVD methods of DC software provided, compared to detector measurements and for three Quality Assurance (QA) plans, similar point dose deviations and γ2D-index passing rates: (0.4 ± 0.1)% vs. (-1.4 ± 1.6)%, and (96.8 ± 0.9)% vs. (98.9 ± 0.6)%, respectively. In terms of γ10-index passing rate, PTD and IVD modalities reached mean values of (99.3 ± 0.1)% and (97.2 ± 1.9)%, respectively. Also for the remaining three clinical plans, similar results were reached for IVD with γ10-index passing rate reaching mean values of (95.9 ± 3.4)%. Therefore, either the PTD and the IVD verification modalities proved to be a very promising tool for the patient-specific QA of HT Plans.
AB - Dosimetry Check (DC) is the world's first commercially available software that provides patient-specific pre-treatment (PTD) and in-vivo transit (IVD) dose quality assurance of static and rotational intensity-modulated radiotherapy treatments. To investigate the feasibility of replacing pre-treatment verification with in vivo dosimetry for Helical Tomotherapy (HT), the commissioning and the application of the DC software was realised. Dose distributions were reconstructed from Mega Voltage Computed Tomography (MVCT) detectors, inside phantoms or patients for a total number of 6 treatment plans. Planned, reconstructed MVCT dose and measurements using ionisation chambers and a matrix detector inserted in cylindrical and octagonal phantoms, respectively, were compared at the isocenter and in two dimensions using the γ2D and γ10-index (3%/3 mm). The dose reconstruction PTD and IVD methods of DC software provided, compared to detector measurements and for three Quality Assurance (QA) plans, similar point dose deviations and γ2D-index passing rates: (0.4 ± 0.1)% vs. (-1.4 ± 1.6)%, and (96.8 ± 0.9)% vs. (98.9 ± 0.6)%, respectively. In terms of γ10-index passing rate, PTD and IVD modalities reached mean values of (99.3 ± 0.1)% and (97.2 ± 1.9)%, respectively. Also for the remaining three clinical plans, similar results were reached for IVD with γ10-index passing rate reaching mean values of (95.9 ± 3.4)%. Therefore, either the PTD and the IVD verification modalities proved to be a very promising tool for the patient-specific QA of HT Plans.
KW - Algoritms and software for radiotherapy
KW - Dosimetry concepts and apparatus
KW - Simulation methods and programs
UR - http://www.scopus.com/inward/record.url?scp=84988813584&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84988813584&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/9/04/C04039
DO - 10.1088/1748-0221/9/04/C04039
M3 - Article
AN - SCOPUS:84988813584
VL - 9
JO - Journal of Instrumentation
JF - Journal of Instrumentation
SN - 1748-0221
IS - 4
M1 - C04039
ER -