Predicting Prodromal Alzheimer's Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data

Martin Dyrba, Frederik Barkhof, Andreas Fellgiebel, Massimo Filippi, Lucrezia Hausner, Karlheinz Hauenstein, Thomas Kirste, Stefan J. Teipel, Federica Agosta, Janusch Blautzik, Arun L W Bokde, Michael Ewers, Florian Fischer, Giovanni B. Frisoni, Lutz Frolich, Harald Hampel, Frank Hentschel, Michael Hüll, Frank Jessen, Vanja KljajevicStefan Klöppel, Thomas Meindl, Laurence O'Dwyer, Michela Pievani, Petra J W Pouwels

Research output: Contribution to journalArticle

Fingerprint Dive into the research topics of 'Predicting Prodromal Alzheimer's Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data'. Together they form a unique fingerprint.

Medicine & Life Sciences