Prediction of high on-treatment platelet reactivity in clopidogrel-treated patients with acute coronary syndromes

G. M. Podda, E. Grossi, T. Palmerini, M. Buscema, E. A. Femia, D. Della Riva, S. de Servi, P. Calabrò, F. Piscione, D. Maffeo, A. Toso, C. Palmieri, M. De Carlo, D. Capodanno, P. Genereux, M. Cattaneo

Research output: Contribution to journalArticlepeer-review


Background About 40% of clopidogrel-treated patients display high platelet reactivity (HPR). Alternative treatments of HPR patients, identified by platelet function tests, failed to improve their clinical outcomes in large randomized clinical trials. A more appealing alternative would be to identify HPR patients a priori, based on the presence/absence of demographic, clinical and genetic factors that affect PR. Due to the complexity and multiplicity of these factors, traditional statistical methods (TSMs) fail to identify a priori HPR patients accurately. The objective was to test whether Artificial Neural Networks (ANNs) or other Machine Learning Systems (MLSs), which use algorithms to extract model-like ‘structure’ information from a given set of data, accurately predict platelet reactivity (PR) in clopidogrel-treated patients. Methods A complete set of fifty-nine demographic, clinical, genetic data was available of 603 patients with acute coronary syndromes enrolled in the prospective GEPRESS study, which showed that HPR after 1 month of clopidogrel treatment independently predicted adverse cardiovascular events in patients with Syntax Score > 14. Data were analysed by MLSs and TSMs. ANNs identified more variables associated PR at 1 month, compared to TSMs. Results ANNs overall accuracy in predicting PR, although superior to other MLSs was 63% (95% CI 59–66). PR phenotype changed in both directions in 35% of patients across the 3 time points tested (before PCI, at hospital discharge and at 1 month). Conclusions Despite their ability to analyse very complex non-linear phenomena, ANNs or MLS were unable to predict PR accurately, likely because PR is a highly unstable phenotype.

Original languageEnglish
Pages (from-to)60-65
Number of pages6
JournalInternational Journal of Cardiology
Publication statusPublished - Aug 1 2017


  • Antiplatelet therapy
  • Artificial neural networks
  • Clopidogrel
  • Platelet reactivity
  • VASP

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Prediction of high on-treatment platelet reactivity in clopidogrel-treated patients with acute coronary syndromes'. Together they form a unique fingerprint.

Cite this