Predictors of Evolution Into Multiple Sclerosis After a First Acute Demyelinating Syndrome in Children and Adolescents

Research output: Contribution to journalArticlepeer-review


Background/Objective: The aim of the study was to estimate the rate of evolution or for multiple sclerosis (MS), after a first acute demyelinating event (ADE) in pediatric patients, and to investigate the variables that predict this evolution. Methods: We retrospectively evaluated the clinical and neuroradiological features of children who presented a first ADE between January 2005 and April 2017. All patients included underwent a baseline MRI, a cerebrospinal fluid and blood analysis, including virological examinations. The evolution into MS was determined by the 2013 International Pediatric Multiple Sclerosis Study Group (IPMSSG) criteria. Clinical and radiological features predictive of MS were determined using multivariate analyses. Results: Ninety-one patients were selected (mean age at onset: 10.11 ± 4.6). After a mean follow-up of 5.6 ± 2.3 years, 35% of patients' conditions evolved to MS. In the logistic multivariate analysis of clinical and laboratory data, the best predictors of evolution into MS were: the presence of oligoclonal bands in CSF (p < 0.001), past infection with EBV (p < 0.001), periventricular lesions (p < 0.001), hypointense lesions on T1 (p < 0.001), and lesions of the corpus callosum (p < 0.001) including Dawson fingers (p < 0.001). Conclusion: Our findings suggest that a pattern of neuroimaging and laboratory findings may help to distinguish between, at clinical onset, children with a monophasic syndrome (clinically isolated syndrome or acute disseminated encephalomyelitis) from those who will develop MS.

Original languageEnglish
Pages (from-to)1156
JournalFrontiers in Neurology
Publication statusPublished - Jan 15 2018


Dive into the research topics of 'Predictors of Evolution Into Multiple Sclerosis After a First Acute Demyelinating Syndrome in Children and Adolescents'. Together they form a unique fingerprint.

Cite this