Presence of wolbachia in three hymenopteran species: Diprion pini (Hymenoptera: Diprionidae), Neodiprion sertifer (Hymenoptera: Diprionidae), and Dahlbominus fuscipennis (Hymenoptera: Eulophidae)

Dario Pistone, Alessandro Bione, Sara Epis, Massimo Pajoro, Stefano Gaiarsa, Claudio Bandi, Davide Sassera

Research output: Contribution to journalArticle

Abstract

Sawflies are important pests of various plant species. Diprion pini (L.) and Neodiprion sertifer (Geoffroy) (Hymenoptera: Diprionidae) are two of the most important sawfly pests in Italy, and both species are parasitized by the hymenopteran parasitoid Dahlbominus fuscipennis (Zetterstedt). Bacterial endosymbionts are currently studied for their high potential in strategies of biocontrol in a number of insect species. In this study, we investigated the presence of symbiotic bacteria (Wolbachia and Cardinium) in the three species of hymenoptera mentioned earlier, both in wild and laboratory populations. Although all samples were negative for the presence of Cardinium, 100% prevalence for Wolbachia was detected, as all examined individuals resulted to be PCR positive. Furthermore, 16S rDNA and ftsZ gene sequencing indicated that all individuals from the three hymenopteran species are infected by a single Wolbachia strain. Additionally, we report the presence of gynandromorphic individuals in D. pini, both in wild and laboratory-reared populations. Heat treatments on D. pini colonies removed the Wolbachia symbionts, but they also prevented the development of adults.

Original languageEnglish
Article numberA140
JournalJournal of Insect Science
Volume14
DOIs
Publication statusPublished - 2014

Keywords

  • diprionid wasp
  • endosymbiont
  • gynandromorphism
  • molecular screening

ASJC Scopus subject areas

  • Insect Science

Fingerprint Dive into the research topics of 'Presence of wolbachia in three hymenopteran species: Diprion pini (Hymenoptera: Diprionidae), Neodiprion sertifer (Hymenoptera: Diprionidae), and Dahlbominus fuscipennis (Hymenoptera: Eulophidae)'. Together they form a unique fingerprint.

  • Cite this