Prevalence of genes for aminoglycoside-modifying enzymes in Staphylococcus epidermidis isolates from orthopedic postsurgical and implant-related infections

Davide Campoccia, Lucio Montanaro, Valter Pirini, Stefano Ravaioli, Carla Renata Arciola

Research output: Contribution to journalArticlepeer-review

Abstract

Staphylococcus epidermidis, a main etiologic agent of implant-related infections, is showing increasing resistance to several antibiotic substances, among them the aminoglycosides, a class of drugs playing a relevant role in current medical protocols to prevent and treat clinical infections. Here we investigated the prevalence of aac(6′)-Ie-aph(Z″), aph (3′)-IIIa, and ant(4′) genes, encoding for the three forms of aminoglycoside-modifying enzymes (AME), responsible for resistance to aminoglycoside antibiotics, in 70 clinical isolates of S. epidermidis from orthopedic postsurgical and implant-related infections. In addition, ermA and ermC, the two most common staphylococcal genes conferring antibiotic resistance to macrolides, lincosamides, and streptogra-min B (MLSb) were included in this investigation. All isolates were characterized by automated ribotyping, so that the presence of antibiotic resistance determinants was investigated in strains exhibiting different ribopatterns. Interestingly, combinations of coexisting AME genes appeared to be typical of specific ribopatterns. The auc(6′)-le~aph(2″) gene was the most prevalent AME gene, being observed in 44% of the isolates. As far as the determinants for MLSB antibiotics are concerned, the ermC gene was observed in 33% of the isolates, while ermA was detected in a single isolate. These results provide a detailed characterization in terms of antibiotic resistance determinants of clones of S. epidermidis frequently isolated from implant orthopedic infections, providing useful indications for more effectual future strategies of infection prevention/eradication based on the incorporation of antibi-otic drugs in biomaterials.

Original languageEnglish
Pages (from-to)654-663
Number of pages10
JournalJournal of Biomedical Materials Research - Part A
Volume88
Issue number3
DOIs
Publication statusPublished - Mar 1 2009

Keywords

  • Aminoglycoside-modifying enzymes
  • Antibiotic resistance genes
  • Orthopedi: Implant
  • Ribotyping
  • Staphylococcus epidermidis

ASJC Scopus subject areas

  • Biomedical Engineering
  • Biomaterials
  • Ceramics and Composites
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Prevalence of genes for aminoglycoside-modifying enzymes in Staphylococcus epidermidis isolates from orthopedic postsurgical and implant-related infections'. Together they form a unique fingerprint.

Cite this