TY - JOUR
T1 - Proteins encoded by human Down syndrome critical region gene 1-like 2 (DSCR1L2) mRNA and by a novel DSCR1L2 mRNA isoform interact with cardiac troponin I (TNNI3)
AU - Canaider, Silvia
AU - Facchin, Federica
AU - Griffoni, Cristiana
AU - Casadei, Raffaella
AU - Vitale, Lorenza
AU - Lenzi, Luca
AU - Frabetti, Flavia
AU - D'Addabbo, Pietro
AU - Carinci, Paolo
AU - Zannotti, Maria
AU - Strippoli, Pierluigi
PY - 2006/5/10
Y1 - 2006/5/10
N2 - Down syndrome critical region gene 1-like 2 (DSCR1L2) belongs to the human DSCR1-like gene family, which also includes DSCR1 and DSCR1L1. Both DSCR1 and DSCR1L1 proteins interact with calcineurin, a calcium/calmodulin-dependent phosphatase. To date, no interactor has been described for DSCR1L2. The aim of this work was to perform a first functional study of DSCR1L2 using yeast two-hybrid analysis conducted on a human heart cDNA library. Here, we report the interaction between DSCR1L2 and the human cardiac troponin I (TNNI3), the heart-specific inhibitory subunit of the troponin complex, a central component of the contractile apparatus. This interaction was confirmed by both yeast cotransformation and GST (glutathione-sepharose transferase) fusion protein assay. Moreover, a new DSCR1L2 mRNA isoform, generated by alternative splicing, was identified and cloned in different tissues: it lacks two central exons, encoding the most conserved domains among the DSCR1-like protein family. A quantitative relative reverse transcription-polymerase chain reaction (RT-PCR) assay showed that in heart tissue the normalized expression level ratio for DSCR1L2 and DSCR1L2-E2E5 mRNA isoforms is 3.5 : 1, respectively. The yeast cotransformation and GST fusion protein assay demonstrated the interaction between this new DSCR1L2 variant and the human cardiac troponin I and the prominent role of DSCR1L2 exon 2 in determining binding between both DSCR1L2 isoforms and TNNI3. These data indicate an entirely new role for a DSCR1-like family gene, suggesting a possible involvement of DSCR1L2 in cardiac contraction.
AB - Down syndrome critical region gene 1-like 2 (DSCR1L2) belongs to the human DSCR1-like gene family, which also includes DSCR1 and DSCR1L1. Both DSCR1 and DSCR1L1 proteins interact with calcineurin, a calcium/calmodulin-dependent phosphatase. To date, no interactor has been described for DSCR1L2. The aim of this work was to perform a first functional study of DSCR1L2 using yeast two-hybrid analysis conducted on a human heart cDNA library. Here, we report the interaction between DSCR1L2 and the human cardiac troponin I (TNNI3), the heart-specific inhibitory subunit of the troponin complex, a central component of the contractile apparatus. This interaction was confirmed by both yeast cotransformation and GST (glutathione-sepharose transferase) fusion protein assay. Moreover, a new DSCR1L2 mRNA isoform, generated by alternative splicing, was identified and cloned in different tissues: it lacks two central exons, encoding the most conserved domains among the DSCR1-like protein family. A quantitative relative reverse transcription-polymerase chain reaction (RT-PCR) assay showed that in heart tissue the normalized expression level ratio for DSCR1L2 and DSCR1L2-E2E5 mRNA isoforms is 3.5 : 1, respectively. The yeast cotransformation and GST fusion protein assay demonstrated the interaction between this new DSCR1L2 variant and the human cardiac troponin I and the prominent role of DSCR1L2 exon 2 in determining binding between both DSCR1L2 isoforms and TNNI3. These data indicate an entirely new role for a DSCR1-like family gene, suggesting a possible involvement of DSCR1L2 in cardiac contraction.
KW - Alternative splicing
KW - Human heart
KW - Two-hybrid system techniques
UR - http://www.scopus.com/inward/record.url?scp=33646044058&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33646044058&partnerID=8YFLogxK
U2 - 10.1016/j.gene.2005.12.029
DO - 10.1016/j.gene.2005.12.029
M3 - Article
C2 - 16516408
AN - SCOPUS:33646044058
VL - 372
SP - 128
EP - 136
JO - Gene
JF - Gene
SN - 0378-1119
IS - 1-2
ER -