Proteomic analysis and protein carbonylation profile in trained and untrained rat muscles

Francesca Magherini, Provvidenza Maria Abruzzo, Michele Puglia, Luca Bini, Tania Gamberi, Fabio Esposito, Arsenio Veicsteinas, Marina Marini, Claudia Fiorillo, Massimo Gulisano, Alessandra Modesti

Research output: Contribution to journalArticlepeer-review


Understanding the relationship between physical exercise, reactive oxygen species and skeletal muscle modification is important in order to better identify the benefits or the damages that appropriate or inappropriate exercise can induce. Unbalanced ROS levels can lead to oxidation of cellular macromolecules and a major class of protein oxidative modification is carbonylation. The aim of this investigation was to study muscle protein expression and carbonylation patterns in trained and untrained animal models. We analyzed two muscles characterized by different metabolisms: tibialis anterior and soleus. Whilst tibialis anterior is mostly composed of fast-twitch fibers, the soleus muscle is mostly composed of slow-twitch fibers. By a proteomic approach we identified 15 protein spots whose expression is influenced by training. Among them in tibialis anterior we observed a down-regulation of several glycolitic enzymes. Concerning carbonylation, we observed the existence of a high basal level of protein carbonylation. Although this level shows some variation among individual animals, several proteins (mostly involved in energy metabolism, muscle contraction, and stress response) appear carbonylated in all animals and in both types of skeletal muscle. Moreover we identified 13 spots whose carbonylation increases after training.

Original languageEnglish
Pages (from-to)978-992
Number of pages15
JournalJournal of Proteomics
Issue number3
Publication statusPublished - Jan 4 2012


  • Carbonylation
  • Exercise training
  • Muscle
  • Oxidative stress
  • Oxyblots
  • Two dimensional gel electrophoresis

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics


Dive into the research topics of 'Proteomic analysis and protein carbonylation profile in trained and untrained rat muscles'. Together they form a unique fingerprint.

Cite this