Pseudomonas aeruginosa infection destroys the barrier function of lung epithelium and enhances polyplex-mediated transfection

Joanna Rejman, Sante Di Gioia, Alessandra Bragonzi, Massimo Conese

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Challenged by the lack of success of experimental gene therapy of cystic fibrosis, we set out to investigate one of the potential causes of this failure, the barrier function of the airway epithelium and the way this is affected by bacterial infection. In an in vitro model of the airway epithelium we determined the effect of Pseudomonas aeruginosa or Escherichia coli on the transfection efficiency of polyethylenimine (PEI)-plasmid DNA complexes, carrying a luciferase gene, as well as on the barrier function of the epithelial cell layer, using transepithelial resistance (TER), cytotoxicity, bacterial transmigration, and morphological appearance as parameters. The level of luciferase expression was more than one order of magnitude higher in the cells which, before transfection, were incubated with P. aeruginosa. TER was strongly reduced by P. aeruginosa, whereas E. coli had no effect. Pseudomonas aeruginosa also effectively destroyed the structure of the tight junctions, as visualized by immunostaining of the zonula occludens. By the same token, small but significant numbers of P. aeruginosa cells were found to migrate through the epithelial layer, whereas no E. coli cells were observed at the transcompartment of the wells. Release of lactate dehydrogenase from the epithelial cells, a parameter of cell damage, occurred in a dose-dependent manner on incubation with P. aeruginosa, but not with E. coli. To evaluate the relevance of these results for the in vivo situation, we infected C57BL/6 mice with P. aeruginosa or E. coli 48 hr before transfecting them intratracheally with PEI-DNA polyplexes. Infection with P. aeruginosa caused a 5-fold increase in luciferase expression whereas infection with E. coli had no effect. Fluorescence microscopy of lung sections, after administration of fluorescein isothiocyanate-labeled polyplexes, showed that prior treatment with P. aeruginosa effectuated penetration of the complexes deeper into the epithelium than in untreated animals. In P. aeruginosa-treated animals fluorescence was detected not only in the airway epithelium itself but also in the parenchyma. We conclude that infection with P. aeruginosa causes disruption of the tight junctions between the cells and thus of the barrier function of the epithelium. As a consequence, PEI-DNA complexes injected intratracheally into infected animals gain access to the basolateral side of the cells and to spaces across the epithelial lining, giving rise to substantially increased transfection efficiency.

Original languageEnglish
Pages (from-to)642-652
Number of pages11
JournalHuman Gene Therapy
Volume18
Issue number7
DOIs
Publication statusPublished - Jul 2007

Fingerprint

Pseudomonas Infections
Pseudomonas aeruginosa
Transfection
Epithelium
Lung
Polyethyleneimine
Tight Junctions
Escherichia coli
Luciferases
DNA
Epithelial Cells
Escherichia coli Infections
Investigational Therapies
Infection
Fluorescein
Inbred C57BL Mouse
L-Lactate Dehydrogenase
Fluorescence Microscopy
Bacterial Infections
Cystic Fibrosis

ASJC Scopus subject areas

  • Genetics

Cite this

Pseudomonas aeruginosa infection destroys the barrier function of lung epithelium and enhances polyplex-mediated transfection. / Rejman, Joanna; Di Gioia, Sante; Bragonzi, Alessandra; Conese, Massimo.

In: Human Gene Therapy, Vol. 18, No. 7, 07.2007, p. 642-652.

Research output: Contribution to journalArticle

@article{a1fccd8fa4f9457f84847f2322819bac,
title = "Pseudomonas aeruginosa infection destroys the barrier function of lung epithelium and enhances polyplex-mediated transfection",
abstract = "Challenged by the lack of success of experimental gene therapy of cystic fibrosis, we set out to investigate one of the potential causes of this failure, the barrier function of the airway epithelium and the way this is affected by bacterial infection. In an in vitro model of the airway epithelium we determined the effect of Pseudomonas aeruginosa or Escherichia coli on the transfection efficiency of polyethylenimine (PEI)-plasmid DNA complexes, carrying a luciferase gene, as well as on the barrier function of the epithelial cell layer, using transepithelial resistance (TER), cytotoxicity, bacterial transmigration, and morphological appearance as parameters. The level of luciferase expression was more than one order of magnitude higher in the cells which, before transfection, were incubated with P. aeruginosa. TER was strongly reduced by P. aeruginosa, whereas E. coli had no effect. Pseudomonas aeruginosa also effectively destroyed the structure of the tight junctions, as visualized by immunostaining of the zonula occludens. By the same token, small but significant numbers of P. aeruginosa cells were found to migrate through the epithelial layer, whereas no E. coli cells were observed at the transcompartment of the wells. Release of lactate dehydrogenase from the epithelial cells, a parameter of cell damage, occurred in a dose-dependent manner on incubation with P. aeruginosa, but not with E. coli. To evaluate the relevance of these results for the in vivo situation, we infected C57BL/6 mice with P. aeruginosa or E. coli 48 hr before transfecting them intratracheally with PEI-DNA polyplexes. Infection with P. aeruginosa caused a 5-fold increase in luciferase expression whereas infection with E. coli had no effect. Fluorescence microscopy of lung sections, after administration of fluorescein isothiocyanate-labeled polyplexes, showed that prior treatment with P. aeruginosa effectuated penetration of the complexes deeper into the epithelium than in untreated animals. In P. aeruginosa-treated animals fluorescence was detected not only in the airway epithelium itself but also in the parenchyma. We conclude that infection with P. aeruginosa causes disruption of the tight junctions between the cells and thus of the barrier function of the epithelium. As a consequence, PEI-DNA complexes injected intratracheally into infected animals gain access to the basolateral side of the cells and to spaces across the epithelial lining, giving rise to substantially increased transfection efficiency.",
author = "Joanna Rejman and {Di Gioia}, Sante and Alessandra Bragonzi and Massimo Conese",
year = "2007",
month = "7",
doi = "10.1089/hum.2006.192",
language = "English",
volume = "18",
pages = "642--652",
journal = "Human Gene Therapy",
issn = "1043-0342",
publisher = "Mary Ann Liebert Inc.",
number = "7",

}

TY - JOUR

T1 - Pseudomonas aeruginosa infection destroys the barrier function of lung epithelium and enhances polyplex-mediated transfection

AU - Rejman, Joanna

AU - Di Gioia, Sante

AU - Bragonzi, Alessandra

AU - Conese, Massimo

PY - 2007/7

Y1 - 2007/7

N2 - Challenged by the lack of success of experimental gene therapy of cystic fibrosis, we set out to investigate one of the potential causes of this failure, the barrier function of the airway epithelium and the way this is affected by bacterial infection. In an in vitro model of the airway epithelium we determined the effect of Pseudomonas aeruginosa or Escherichia coli on the transfection efficiency of polyethylenimine (PEI)-plasmid DNA complexes, carrying a luciferase gene, as well as on the barrier function of the epithelial cell layer, using transepithelial resistance (TER), cytotoxicity, bacterial transmigration, and morphological appearance as parameters. The level of luciferase expression was more than one order of magnitude higher in the cells which, before transfection, were incubated with P. aeruginosa. TER was strongly reduced by P. aeruginosa, whereas E. coli had no effect. Pseudomonas aeruginosa also effectively destroyed the structure of the tight junctions, as visualized by immunostaining of the zonula occludens. By the same token, small but significant numbers of P. aeruginosa cells were found to migrate through the epithelial layer, whereas no E. coli cells were observed at the transcompartment of the wells. Release of lactate dehydrogenase from the epithelial cells, a parameter of cell damage, occurred in a dose-dependent manner on incubation with P. aeruginosa, but not with E. coli. To evaluate the relevance of these results for the in vivo situation, we infected C57BL/6 mice with P. aeruginosa or E. coli 48 hr before transfecting them intratracheally with PEI-DNA polyplexes. Infection with P. aeruginosa caused a 5-fold increase in luciferase expression whereas infection with E. coli had no effect. Fluorescence microscopy of lung sections, after administration of fluorescein isothiocyanate-labeled polyplexes, showed that prior treatment with P. aeruginosa effectuated penetration of the complexes deeper into the epithelium than in untreated animals. In P. aeruginosa-treated animals fluorescence was detected not only in the airway epithelium itself but also in the parenchyma. We conclude that infection with P. aeruginosa causes disruption of the tight junctions between the cells and thus of the barrier function of the epithelium. As a consequence, PEI-DNA complexes injected intratracheally into infected animals gain access to the basolateral side of the cells and to spaces across the epithelial lining, giving rise to substantially increased transfection efficiency.

AB - Challenged by the lack of success of experimental gene therapy of cystic fibrosis, we set out to investigate one of the potential causes of this failure, the barrier function of the airway epithelium and the way this is affected by bacterial infection. In an in vitro model of the airway epithelium we determined the effect of Pseudomonas aeruginosa or Escherichia coli on the transfection efficiency of polyethylenimine (PEI)-plasmid DNA complexes, carrying a luciferase gene, as well as on the barrier function of the epithelial cell layer, using transepithelial resistance (TER), cytotoxicity, bacterial transmigration, and morphological appearance as parameters. The level of luciferase expression was more than one order of magnitude higher in the cells which, before transfection, were incubated with P. aeruginosa. TER was strongly reduced by P. aeruginosa, whereas E. coli had no effect. Pseudomonas aeruginosa also effectively destroyed the structure of the tight junctions, as visualized by immunostaining of the zonula occludens. By the same token, small but significant numbers of P. aeruginosa cells were found to migrate through the epithelial layer, whereas no E. coli cells were observed at the transcompartment of the wells. Release of lactate dehydrogenase from the epithelial cells, a parameter of cell damage, occurred in a dose-dependent manner on incubation with P. aeruginosa, but not with E. coli. To evaluate the relevance of these results for the in vivo situation, we infected C57BL/6 mice with P. aeruginosa or E. coli 48 hr before transfecting them intratracheally with PEI-DNA polyplexes. Infection with P. aeruginosa caused a 5-fold increase in luciferase expression whereas infection with E. coli had no effect. Fluorescence microscopy of lung sections, after administration of fluorescein isothiocyanate-labeled polyplexes, showed that prior treatment with P. aeruginosa effectuated penetration of the complexes deeper into the epithelium than in untreated animals. In P. aeruginosa-treated animals fluorescence was detected not only in the airway epithelium itself but also in the parenchyma. We conclude that infection with P. aeruginosa causes disruption of the tight junctions between the cells and thus of the barrier function of the epithelium. As a consequence, PEI-DNA complexes injected intratracheally into infected animals gain access to the basolateral side of the cells and to spaces across the epithelial lining, giving rise to substantially increased transfection efficiency.

UR - http://www.scopus.com/inward/record.url?scp=34547538332&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34547538332&partnerID=8YFLogxK

U2 - 10.1089/hum.2006.192

DO - 10.1089/hum.2006.192

M3 - Article

C2 - 17638571

AN - SCOPUS:34547538332

VL - 18

SP - 642

EP - 652

JO - Human Gene Therapy

JF - Human Gene Therapy

SN - 1043-0342

IS - 7

ER -