Pure MnTBAP selectively scavenges peroxynitrite over superoxide: Comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy

Ines Batinić-Haberle, Salvatore Cuzzocrea, Júlio S. Rebouças, Gerardo Ferrer-Sueta, Emanuela Mazzon, Rosanna Di Paola, Rafael Radi, Ivan Spasojević, Ludmil Benov, Daniela Salvemini

Research output: Contribution to journalArticle

91 Citations (Scopus)

Abstract

MnTBAP is often referred to as an SOD mimic in numerous models of oxidative stress. We have recently reported that pure MnTBAP does not dismute superoxide, but commercial or poorly purified samples are able to perform O2·-dismutation with low-to-moderate efficacy via non-innocent Mn-containing impurities. Herein, we show that neither commercial nor pure MnTBAP could substitute for SOD enzyme in a SOD-deficient Escherichia coli model, whereas MnTE-2-PyP-treated SOD-deficient E. coli grew as well as a wild-type strain. This SOD-specific system indicates that MnTBAP does not act as an SOD mimic in vivo. In another model, carrageenan-induced pleurisy in mice, inflammation was evidenced by increased pleural fluid exudate and neutrophil infiltration and activation: these events were blocked by 0.3 mg/kg MnTE-2-PyP and, to a slightly lesser extent, by 10 mg/kg of either MnTBAP. Also, 3-nitrotyrosine formation, an indication of peroxynitrite existence in vivo, was blocked by both compounds; again MnTE-2-PyP was 33-fold more effective. Pleurisy model data indicate that MnTBAP exerts some protective actions in common with MnTE-2-PyP, which are not O2·- related and can be fully rationalized if one considers that the common biological role shared by MnTBAP and MnTE-2-PyP is related to their reduction of peroxynitrite and carbonate radical, the latter arising from ONOOCO2 adduct. The log kcat (O2·-) value for MnTBAP is estimated to be about 3.16, which is ~ 5 and ~ 6 orders of magnitude smaller than the SOD activities of the potent SOD mimic MnTE-2-PyP and Cu,Zn-SOD, respectively. This very low value indicates that MnTBAP is too inefficient at dismuting superoxide to be of any biological impact, which was confirmed in the SOD-deficient E. coli model. The peroxynitrite scavenging ability of MnTBAP, however, is only ~ 2.5 orders of magnitude smaller than that of MnTE-2-PyP and is not significantly affected by the presence of the SOD-active impurities in the commercial MnTBAP sample (log kred (ONOO-) = 5.06 for pure and 4.97 for commercial sample). The reduction of carbonate radical is equally fast with MnTBAP and MnTE-2-PyP. The dose of MnTBAP required to yield oxidative stress protection and block nitrotyrosine formation in the pleurisy model is > 1.5 orders of magnitude higher than that of MnTE-2-PyP, which could be related to the lower ability of MnTBAP to scavenge peroxynitrite. The slightly better protection observed with the commercial MnTBAP sample (relative to the pure MnTBAP) could arise from its impurities, which, by scavenging O2·-, reduce consequently the overall peroxynitrite and secondary ROS/RNS levels. These observations have profound biological repercussions as they may suggest that the effect of MnTBAP observed in numerous studies may conceivably relate to peroxynitrite scavenging. Moreover, provided that pure MnTBAP is unable to dismute superoxide at any significant extent, but is able to partially scavenge peroxynitrite and carbonate radical, this compound may prove valuable in distinguishing ONOO-/CO3·- from O2·- pathways.

Original languageEnglish
Pages (from-to)192-201
Number of pages10
JournalFree Radical Biology and Medicine
Volume46
Issue number2
DOIs
Publication statusPublished - Jan 15 2009

Fingerprint

Pleurisy
Peroxynitrous Acid
Oxidative stress
Carrageenan
Superoxides
Escherichia coli
Oxidative Stress
Wounds and Injuries
Carbonates
Scavenging
manganese tetrakis-(N-ethyl-2 pyridyl) porphyrin
manganese(III)-tetrakis(4-benzoic acid)porphyrin
Impurities
Neutrophil Activation
Neutrophil Infiltration

Keywords

  • AEOL10113
  • Carbonate radical scavenger
  • Carrageenan-induced pleurisy in mouse
  • Free radicals
  • MnTBAP
  • MnTE-2-PyP
  • Peroxynitrite scavenger
  • SOD mimic
  • SOD-deficient E. coli

ASJC Scopus subject areas

  • Biochemistry
  • Physiology (medical)

Cite this

Pure MnTBAP selectively scavenges peroxynitrite over superoxide : Comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy. / Batinić-Haberle, Ines; Cuzzocrea, Salvatore; Rebouças, Júlio S.; Ferrer-Sueta, Gerardo; Mazzon, Emanuela; Di Paola, Rosanna; Radi, Rafael; Spasojević, Ivan; Benov, Ludmil; Salvemini, Daniela.

In: Free Radical Biology and Medicine, Vol. 46, No. 2, 15.01.2009, p. 192-201.

Research output: Contribution to journalArticle

Batinić-Haberle, Ines ; Cuzzocrea, Salvatore ; Rebouças, Júlio S. ; Ferrer-Sueta, Gerardo ; Mazzon, Emanuela ; Di Paola, Rosanna ; Radi, Rafael ; Spasojević, Ivan ; Benov, Ludmil ; Salvemini, Daniela. / Pure MnTBAP selectively scavenges peroxynitrite over superoxide : Comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy. In: Free Radical Biology and Medicine. 2009 ; Vol. 46, No. 2. pp. 192-201.
@article{8b153c3ce0384656a975598f0a16420e,
title = "Pure MnTBAP selectively scavenges peroxynitrite over superoxide: Comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy",
abstract = "MnTBAP is often referred to as an SOD mimic in numerous models of oxidative stress. We have recently reported that pure MnTBAP does not dismute superoxide, but commercial or poorly purified samples are able to perform O2·-dismutation with low-to-moderate efficacy via non-innocent Mn-containing impurities. Herein, we show that neither commercial nor pure MnTBAP could substitute for SOD enzyme in a SOD-deficient Escherichia coli model, whereas MnTE-2-PyP-treated SOD-deficient E. coli grew as well as a wild-type strain. This SOD-specific system indicates that MnTBAP does not act as an SOD mimic in vivo. In another model, carrageenan-induced pleurisy in mice, inflammation was evidenced by increased pleural fluid exudate and neutrophil infiltration and activation: these events were blocked by 0.3 mg/kg MnTE-2-PyP and, to a slightly lesser extent, by 10 mg/kg of either MnTBAP. Also, 3-nitrotyrosine formation, an indication of peroxynitrite existence in vivo, was blocked by both compounds; again MnTE-2-PyP was 33-fold more effective. Pleurisy model data indicate that MnTBAP exerts some protective actions in common with MnTE-2-PyP, which are not O2·- related and can be fully rationalized if one considers that the common biological role shared by MnTBAP and MnTE-2-PyP is related to their reduction of peroxynitrite and carbonate radical, the latter arising from ONOOCO2 adduct. The log kcat (O2·-) value for MnTBAP is estimated to be about 3.16, which is ~ 5 and ~ 6 orders of magnitude smaller than the SOD activities of the potent SOD mimic MnTE-2-PyP and Cu,Zn-SOD, respectively. This very low value indicates that MnTBAP is too inefficient at dismuting superoxide to be of any biological impact, which was confirmed in the SOD-deficient E. coli model. The peroxynitrite scavenging ability of MnTBAP, however, is only ~ 2.5 orders of magnitude smaller than that of MnTE-2-PyP and is not significantly affected by the presence of the SOD-active impurities in the commercial MnTBAP sample (log kred (ONOO-) = 5.06 for pure and 4.97 for commercial sample). The reduction of carbonate radical is equally fast with MnTBAP and MnTE-2-PyP. The dose of MnTBAP required to yield oxidative stress protection and block nitrotyrosine formation in the pleurisy model is > 1.5 orders of magnitude higher than that of MnTE-2-PyP, which could be related to the lower ability of MnTBAP to scavenge peroxynitrite. The slightly better protection observed with the commercial MnTBAP sample (relative to the pure MnTBAP) could arise from its impurities, which, by scavenging O2·-, reduce consequently the overall peroxynitrite and secondary ROS/RNS levels. These observations have profound biological repercussions as they may suggest that the effect of MnTBAP observed in numerous studies may conceivably relate to peroxynitrite scavenging. Moreover, provided that pure MnTBAP is unable to dismute superoxide at any significant extent, but is able to partially scavenge peroxynitrite and carbonate radical, this compound may prove valuable in distinguishing ONOO-/CO3·- from O2·- pathways.",
keywords = "AEOL10113, Carbonate radical scavenger, Carrageenan-induced pleurisy in mouse, Free radicals, MnTBAP, MnTE-2-PyP, Peroxynitrite scavenger, SOD mimic, SOD-deficient E. coli",
author = "Ines Batinić-Haberle and Salvatore Cuzzocrea and Rebou{\cc}as, {J{\'u}lio S.} and Gerardo Ferrer-Sueta and Emanuela Mazzon and {Di Paola}, Rosanna and Rafael Radi and Ivan Spasojević and Ludmil Benov and Daniela Salvemini",
year = "2009",
month = "1",
day = "15",
doi = "10.1016/j.freeradbiomed.2008.09.042",
language = "English",
volume = "46",
pages = "192--201",
journal = "Free Radical Biology and Medicine",
issn = "0891-5849",
publisher = "Elsevier Inc.",
number = "2",

}

TY - JOUR

T1 - Pure MnTBAP selectively scavenges peroxynitrite over superoxide

T2 - Comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy

AU - Batinić-Haberle, Ines

AU - Cuzzocrea, Salvatore

AU - Rebouças, Júlio S.

AU - Ferrer-Sueta, Gerardo

AU - Mazzon, Emanuela

AU - Di Paola, Rosanna

AU - Radi, Rafael

AU - Spasojević, Ivan

AU - Benov, Ludmil

AU - Salvemini, Daniela

PY - 2009/1/15

Y1 - 2009/1/15

N2 - MnTBAP is often referred to as an SOD mimic in numerous models of oxidative stress. We have recently reported that pure MnTBAP does not dismute superoxide, but commercial or poorly purified samples are able to perform O2·-dismutation with low-to-moderate efficacy via non-innocent Mn-containing impurities. Herein, we show that neither commercial nor pure MnTBAP could substitute for SOD enzyme in a SOD-deficient Escherichia coli model, whereas MnTE-2-PyP-treated SOD-deficient E. coli grew as well as a wild-type strain. This SOD-specific system indicates that MnTBAP does not act as an SOD mimic in vivo. In another model, carrageenan-induced pleurisy in mice, inflammation was evidenced by increased pleural fluid exudate and neutrophil infiltration and activation: these events were blocked by 0.3 mg/kg MnTE-2-PyP and, to a slightly lesser extent, by 10 mg/kg of either MnTBAP. Also, 3-nitrotyrosine formation, an indication of peroxynitrite existence in vivo, was blocked by both compounds; again MnTE-2-PyP was 33-fold more effective. Pleurisy model data indicate that MnTBAP exerts some protective actions in common with MnTE-2-PyP, which are not O2·- related and can be fully rationalized if one considers that the common biological role shared by MnTBAP and MnTE-2-PyP is related to their reduction of peroxynitrite and carbonate radical, the latter arising from ONOOCO2 adduct. The log kcat (O2·-) value for MnTBAP is estimated to be about 3.16, which is ~ 5 and ~ 6 orders of magnitude smaller than the SOD activities of the potent SOD mimic MnTE-2-PyP and Cu,Zn-SOD, respectively. This very low value indicates that MnTBAP is too inefficient at dismuting superoxide to be of any biological impact, which was confirmed in the SOD-deficient E. coli model. The peroxynitrite scavenging ability of MnTBAP, however, is only ~ 2.5 orders of magnitude smaller than that of MnTE-2-PyP and is not significantly affected by the presence of the SOD-active impurities in the commercial MnTBAP sample (log kred (ONOO-) = 5.06 for pure and 4.97 for commercial sample). The reduction of carbonate radical is equally fast with MnTBAP and MnTE-2-PyP. The dose of MnTBAP required to yield oxidative stress protection and block nitrotyrosine formation in the pleurisy model is > 1.5 orders of magnitude higher than that of MnTE-2-PyP, which could be related to the lower ability of MnTBAP to scavenge peroxynitrite. The slightly better protection observed with the commercial MnTBAP sample (relative to the pure MnTBAP) could arise from its impurities, which, by scavenging O2·-, reduce consequently the overall peroxynitrite and secondary ROS/RNS levels. These observations have profound biological repercussions as they may suggest that the effect of MnTBAP observed in numerous studies may conceivably relate to peroxynitrite scavenging. Moreover, provided that pure MnTBAP is unable to dismute superoxide at any significant extent, but is able to partially scavenge peroxynitrite and carbonate radical, this compound may prove valuable in distinguishing ONOO-/CO3·- from O2·- pathways.

AB - MnTBAP is often referred to as an SOD mimic in numerous models of oxidative stress. We have recently reported that pure MnTBAP does not dismute superoxide, but commercial or poorly purified samples are able to perform O2·-dismutation with low-to-moderate efficacy via non-innocent Mn-containing impurities. Herein, we show that neither commercial nor pure MnTBAP could substitute for SOD enzyme in a SOD-deficient Escherichia coli model, whereas MnTE-2-PyP-treated SOD-deficient E. coli grew as well as a wild-type strain. This SOD-specific system indicates that MnTBAP does not act as an SOD mimic in vivo. In another model, carrageenan-induced pleurisy in mice, inflammation was evidenced by increased pleural fluid exudate and neutrophil infiltration and activation: these events were blocked by 0.3 mg/kg MnTE-2-PyP and, to a slightly lesser extent, by 10 mg/kg of either MnTBAP. Also, 3-nitrotyrosine formation, an indication of peroxynitrite existence in vivo, was blocked by both compounds; again MnTE-2-PyP was 33-fold more effective. Pleurisy model data indicate that MnTBAP exerts some protective actions in common with MnTE-2-PyP, which are not O2·- related and can be fully rationalized if one considers that the common biological role shared by MnTBAP and MnTE-2-PyP is related to their reduction of peroxynitrite and carbonate radical, the latter arising from ONOOCO2 adduct. The log kcat (O2·-) value for MnTBAP is estimated to be about 3.16, which is ~ 5 and ~ 6 orders of magnitude smaller than the SOD activities of the potent SOD mimic MnTE-2-PyP and Cu,Zn-SOD, respectively. This very low value indicates that MnTBAP is too inefficient at dismuting superoxide to be of any biological impact, which was confirmed in the SOD-deficient E. coli model. The peroxynitrite scavenging ability of MnTBAP, however, is only ~ 2.5 orders of magnitude smaller than that of MnTE-2-PyP and is not significantly affected by the presence of the SOD-active impurities in the commercial MnTBAP sample (log kred (ONOO-) = 5.06 for pure and 4.97 for commercial sample). The reduction of carbonate radical is equally fast with MnTBAP and MnTE-2-PyP. The dose of MnTBAP required to yield oxidative stress protection and block nitrotyrosine formation in the pleurisy model is > 1.5 orders of magnitude higher than that of MnTE-2-PyP, which could be related to the lower ability of MnTBAP to scavenge peroxynitrite. The slightly better protection observed with the commercial MnTBAP sample (relative to the pure MnTBAP) could arise from its impurities, which, by scavenging O2·-, reduce consequently the overall peroxynitrite and secondary ROS/RNS levels. These observations have profound biological repercussions as they may suggest that the effect of MnTBAP observed in numerous studies may conceivably relate to peroxynitrite scavenging. Moreover, provided that pure MnTBAP is unable to dismute superoxide at any significant extent, but is able to partially scavenge peroxynitrite and carbonate radical, this compound may prove valuable in distinguishing ONOO-/CO3·- from O2·- pathways.

KW - AEOL10113

KW - Carbonate radical scavenger

KW - Carrageenan-induced pleurisy in mouse

KW - Free radicals

KW - MnTBAP

KW - MnTE-2-PyP

KW - Peroxynitrite scavenger

KW - SOD mimic

KW - SOD-deficient E. coli

UR - http://www.scopus.com/inward/record.url?scp=58049131646&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=58049131646&partnerID=8YFLogxK

U2 - 10.1016/j.freeradbiomed.2008.09.042

DO - 10.1016/j.freeradbiomed.2008.09.042

M3 - Article

C2 - 19007878

AN - SCOPUS:58049131646

VL - 46

SP - 192

EP - 201

JO - Free Radical Biology and Medicine

JF - Free Radical Biology and Medicine

SN - 0891-5849

IS - 2

ER -