Purification and biochemical characterization of the VIM-1 metallo-β-lactamase

N. Franceschini, B. Caravelli, J. D. Docquier, M. Galleni, J. M. Frere, G. Amicosante, G. M. Rossolini

Research output: Contribution to journalArticlepeer-review


VIM-1 is a new group 3 metallo-β-lactamase recently detected in carbapenem-resistant nosocomial isolates of Pseudomonas aeruginosa from the Mediterranean area. In this work, VIM-1 was purified from an Escherichia coli strain carrying the cloned bla(VIM-1) gene by means of an anion-exchange chromatography step followed by a gel permeation chromatography step. The purified enzyme exhibited a molecular mass of 26 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an acidic pI of 5.1 in analytical isoelectric focusing. Amino-terminal sequencing showed that mature VIM-1 results from the removal of a 26-amino-acid signal peptide from the precursor. VIM-1 hydrolyzes a broad array of β-lactam compounds, including penicillins, narrow- to expanded-spectrum cephalosporins, carbapenems, and mechanism-based serine-β-lactamase inactivators. Only monobactams escape hydrolysis. The highest catalytic constant/K(m) ratios (> 106 M-1 · s-1) were observed with carbenicillin, azlocillin, some cephalosporins (cephaloridine, cephalothin, cefuroxime, cefepime, and cefpirome), imipenem, and biapenem. Kinetic parameters showed remarkable variability with different β-lactams and also within the various penam, cephem, and carbapenem compounds, resulting in no clear preference of the enzyme for any of these β-lactam subfamilies. Significant differences were observed with some substrates between the kinetic parameters of VIM-1 and those of other metallo-β-lactamases. Inactivation assays carried out with various chelating agents (EDTA, 1,10-o-phenanthroline, and pyridine-2,6-dicarboxylic acid) indicated that formation of a ternary enzyme-metal-chelator complex precedes metal removal from the zinc center of the protein and revealed notable differences in the inactivation parameters of VIM-1 with different agents.

Original languageEnglish
Pages (from-to)3003-3007
Number of pages5
JournalAntimicrobial Agents and Chemotherapy
Issue number11
Publication statusPublished - 2000

ASJC Scopus subject areas

  • Pharmacology (medical)

Fingerprint Dive into the research topics of 'Purification and biochemical characterization of the VIM-1 metallo-β-lactamase'. Together they form a unique fingerprint.

Cite this