Quiescent and Active Tear Protein Profiles to Predict Vernal Keratoconjunctivitis Reactivation

Alessandra Micera, Antonio Di Zazzo, Graziana Esposito, Roberto Sgrulletta, Virginia L. Calder, Stefano Bonini

Research output: Contribution to journalArticlepeer-review

Abstract

Objective. Vernal keratoconjunctivitis (VKC) is a chronic recurrent bilateral inflammation of the conjunctiva associated with atopy. Several inflammatory and tissue remodeling factors contribute to VKC disease. The aim is to provide a chip-based protein analysis in tears from patients suffering from quiescent or active VKC. Methods. This study cohort included 16 consecutive patients with VKC and 10 controls. Participants were subjected to clinical assessment of ocular surface and tear sampling. Total protein quantification, total protein sketch, and protein array (sixty protein candidates) were evaluated. Results. An overall increased Fluorescent Intensity expression was observed in VKC arrays. Particularly, IL1β, IL15, IL21, Eotaxin2, TACE, MIP1α, MIP3α, NCAM1, ICAM2, βNGF, NT4, BDNF, βFGF, SCF, MMP1, and MMP2 were increased in quiescent VKC. Of those candidates, only IL1β, IL15, IL21, βNGF, SCF, MMP2, Eotaxin2, TACE, MIP1α, MIP3α, NCAM1, and ICAM2 were increased in both active and quiescent VKC. Finally, NT4, βFGF, and MMP1 were highly increased in active VKC. Conclusion. A distinct "protein tear-print" characterizes VKC activity, confirming some previously reported factors and highlighting some new candidates common to quiescent and active states. Those candidates expressed in quiescent VKC might be considered as predictive indicators of VKC reactivation and/or exacerbation out-of-season.

Original languageEnglish
Article number9672082
Number of pages10
JournalBioMed Research International
Volume2016
DOIs
Publication statusPublished - 2016

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint

Dive into the research topics of 'Quiescent and Active Tear Protein Profiles to Predict Vernal Keratoconjunctivitis Reactivation'. Together they form a unique fingerprint.

Cite this