Radiation Increases Functional KCa3.1 Expression and Invasiveness in Glioblastoma

Giuseppina D'Alessandro, Lucia Monaco, Luigi Catacuzzeno, Fabrizio Antonangeli, Antonio Santoro, Vincenzo Esposito, Fabio Franciolini, Heike Wulff, Cristina Limatola

Research output: Contribution to journalArticlepeer-review


Glioblastoma (GBM) is a deadly brain tumor, with fast recurrence even after surgical intervention, radio- and chemotherapies. One of the reasons for relapse is the early invasion of surrounding brain parenchyma by GBM, rendering tumor eradication difficult. Recent studies demonstrate that, in addition to eliminate possible residual tumoral cells after surgery, radiation stimulates the infiltrative behavior of GBM cells. The intermediate conductance of Ca2+-activated potassium channels (KCa3.1) play an important role in regulating the migration of GBM. Here, we show that high dose radiation of patient-derived GBM cells increases their invasion, and induces the transcription of key genes related to these functions, including the IL-4/IL-4R pair. In addition, we demonstrate that radiation increases the expression of KCa3.1 channels, and that their pharmacological inhibition counteracts the pro-invasive phenotype induced by radiation in tumor cells. Our data describe a possible approach to treat tumor resistance that follows radiation therapy in GBM patients.

Original languageEnglish
Issue number3
Publication statusPublished - Feb 26 2019


Dive into the research topics of 'Radiation Increases Functional KCa3.1 Expression and Invasiveness in Glioblastoma'. Together they form a unique fingerprint.

Cite this