Radiobiologic response of medulloblastoma cell lines: Involvement of β-catenin?

Roberta Salaroli, Tiziano Di Tomaso, Alice Ronchi, Claudio Ceccarelli, Silvia Cammelli, Alessandra Cappellini, Giuseppe Nicola Martinelli, Enza Barbieri, Felice Giangaspero, Giovanna Cenacchi

Research output: Contribution to journalArticlepeer-review


Medulloblastoma (MB) is the most common brain malignancy in children. Whole neural axis irradiation is the treatment of choice, but it often results in long-term neurocognitive and developmental impairment. Only insights into MB biology will lead to improved therapeutic outcome. Wingless (WNT) signalling deregulation occurs in up to 25% of sporadic tumors, but the specific role of nuclear β-catenin and its involvement in the radioresponse remains unsettled. Therefore we studied the γ-radiation response of two MB cell lines from cellular and molecular points of view. Our data show that the p53 wild-type cell line is more sensitive to ionizing radiations (IR) than the p53 mutated line, but apoptosis is also induced in p53-mutated cells, suggesting an alternative p53-independent mechanism. In addition, this study is the first to demonstrate that γ-rays trigger the WNT system in our in vitro models. Further studies are required to test if this could explain the radiosensitivity of MB and the favorable prognostic value of nuclear β-catenin in this tumor.

Original languageEnglish
Pages (from-to)243-251
Number of pages9
JournalJournal of Neuro-Oncology
Issue number3
Publication statusPublished - 2008


  • β-catenin
  • Celllines
  • Ionizing radiation
  • Medulloblastoma
  • p53
  • Wingless(WNT) signalling

ASJC Scopus subject areas

  • Clinical Neurology
  • Cancer Research
  • Oncology
  • Neurology


Dive into the research topics of 'Radiobiologic response of medulloblastoma cell lines: Involvement of β-catenin?'. Together they form a unique fingerprint.

Cite this