TY - JOUR
T1 - Radiomic and artificial intelligence analysis with textural metrics, morphological and dynamic perfusion features extracted by dynamic contrast-enhanced magnetic resonance imaging in the classification of breast lesions
AU - Fusco, Roberta
AU - Piccirillo, Adele
AU - Sansone, Mario
AU - Granata, Vincenza
AU - Vallone, Paolo
AU - Barretta, Maria Luisa
AU - Petrosino, Teresa
AU - Siani, Claudio
AU - Di Giacomo, Raimondo
AU - Di Bonito, Maurizio
AU - Botti, Gerardo
AU - Petrillo, Antonella
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/2/2
Y1 - 2021/2/2
N2 - Purpose: The aim of the study was to estimate the diagnostic accuracy of textural, morphological and dynamic features, extracted by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images, by carrying out univariate and multivariate statistical analyses including artificial intelligence approaches. Methods: In total, 85 patients with known breast lesion were en-rolled in this retrospective study according to regulations issued by the local Institutional Review Board. All patients underwent DCE-MRI examination. The reference standard was pathology from a surgical specimen for malignant lesions and pathology from a surgical specimen or fine needle aspiration cytology, core or Tru-Cut needle biopsy for benign lesions. In total, 91 samples of 85 patients were analyzed. Furthermore, 48 textural metrics, 15 morphological and 81 dynamic parameters were extracted by manually segmenting regions of interest. Statistical analyses including uni-variate and multivariate approaches were performed: non-parametric Wilcoxon–Mann–Whitney test; receiver operating characteristic (ROC), linear classifier (LDA), decision tree (DT), k-nearest neighbors (KNN), and support vector machine (SVM) were utilized. A balancing approach and feature selection methods were used. Results: The univariate analysis showed low accuracy and area under the curve (AUC) for all considered features. Instead, in the multivariate textural analysis, the best performance (accuracy (ACC) = 0.78; AUC = 0.78) was reached with all 48 metrics and an LDA trained with balanced data. The best performance (ACC = 0.75; AUC = 0.80) using morphological features was reached with an SVM trained with 10-fold cross-variation (CV) and balanced data (with adaptive synthetic (ADASYN) function) and a subset of five robust morphological features (circularity, rectangularity, sphericity, gleaning and surface). The best performance (ACC = 0.82; AUC = 0.83) using dynamic features was reached with a trained SVM and balanced data (with ADASYN function). Conclusion: Multivariate analyses using pattern recognition approaches, including all morphological, textural and dynamic features, optimized by adaptive synthetic sampling and feature selection operations obtained the best results and showed the best performance in the discrimination of benign and malignant lesions.
AB - Purpose: The aim of the study was to estimate the diagnostic accuracy of textural, morphological and dynamic features, extracted by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images, by carrying out univariate and multivariate statistical analyses including artificial intelligence approaches. Methods: In total, 85 patients with known breast lesion were en-rolled in this retrospective study according to regulations issued by the local Institutional Review Board. All patients underwent DCE-MRI examination. The reference standard was pathology from a surgical specimen for malignant lesions and pathology from a surgical specimen or fine needle aspiration cytology, core or Tru-Cut needle biopsy for benign lesions. In total, 91 samples of 85 patients were analyzed. Furthermore, 48 textural metrics, 15 morphological and 81 dynamic parameters were extracted by manually segmenting regions of interest. Statistical analyses including uni-variate and multivariate approaches were performed: non-parametric Wilcoxon–Mann–Whitney test; receiver operating characteristic (ROC), linear classifier (LDA), decision tree (DT), k-nearest neighbors (KNN), and support vector machine (SVM) were utilized. A balancing approach and feature selection methods were used. Results: The univariate analysis showed low accuracy and area under the curve (AUC) for all considered features. Instead, in the multivariate textural analysis, the best performance (accuracy (ACC) = 0.78; AUC = 0.78) was reached with all 48 metrics and an LDA trained with balanced data. The best performance (ACC = 0.75; AUC = 0.80) using morphological features was reached with an SVM trained with 10-fold cross-variation (CV) and balanced data (with adaptive synthetic (ADASYN) function) and a subset of five robust morphological features (circularity, rectangularity, sphericity, gleaning and surface). The best performance (ACC = 0.82; AUC = 0.83) using dynamic features was reached with a trained SVM and balanced data (with ADASYN function). Conclusion: Multivariate analyses using pattern recognition approaches, including all morphological, textural and dynamic features, optimized by adaptive synthetic sampling and feature selection operations obtained the best results and showed the best performance in the discrimination of benign and malignant lesions.
KW - Artificial intelligence
KW - Breast cancer
KW - Classification
KW - Radiomics
UR - http://www.scopus.com/inward/record.url?scp=85101918440&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101918440&partnerID=8YFLogxK
U2 - 10.3390/app11041880
DO - 10.3390/app11041880
M3 - Article
AN - SCOPUS:85101918440
VL - 11
SP - 1
EP - 16
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
SN - 2076-3417
IS - 4
M1 - 1880
ER -