TY - JOUR
T1 - Radiomics of MRI for the prediction of the pathological response to neoadjuvant chemotherapy in breast cancer patients
T2 - A single referral centre analysis
AU - Pesapane, Filippo
AU - Rotili, Anna
AU - Botta, Francesca
AU - Raimondi, Sara
AU - Bianchini, Linda
AU - Corso, Federica
AU - Ferrari, Federica
AU - Penco, Silvia
AU - Nicosia, Luca
AU - Bozzini, Anna
AU - Pizzamiglio, Maria
AU - Origgi, Daniela
AU - Cremonesi, Marta
AU - Cassano, Enrico
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - Objectives: We aimed to determine whether radiomic features extracted from a highly homogeneous database of breast MRI could non-invasively predict pathological complete responses (pCR) to neoadjuvant chemotherapy (NACT) in patients with breast cancer. Methods: One hundred patients with breast cancer receiving NACT in a single center (01/2017–06/2019) and undergoing breast MRI were retrospectively evaluated. For each patient, radiomic features were extracted within the biopsy-proven tumor on T1-weighted (T1-w) contrast-enhanced MRI performed before NACT. The pCR to NACT was determined based on the final surgical specimen. The association of clinical/biological and radiomic features with response to NACT was evaluated by univariate and multivariable analysis by using random forest and logistic regression. The performances of all models were assessed using the areas under the receiver operating characteristic curves (AUC) with 95% confidence intervals (CI). Results: Eighty-three patients (mean (SD) age, 47.26 (8.6) years) were included. Patients with HER2+, basal-like molecular subtypes and Ki67 ≥ 20% presented a pCR to NACT more frequently; the clinical/biological model’s AUC (95% CI) was 0.81 (0.71–0.90). Using 136 representative radiomics features selected through cluster analysis from the 1037 extracted features, a radiomic score was calculated to predict the response to NACT, with AUC (95% CI): 0.64 (0.51–0.75). After combining the clinical/biological and radiomics models, the AUC (95% CI) was 0.83 (0.73–0.92). Conclusions: MRI-based radiomic features slightly improved the pre-treatment prediction of pCR to NACT, in addiction to biological characteristics. If confirmed on larger cohorts, it could be helpful to identify such patients, to avoid unnecessary treatment.
AB - Objectives: We aimed to determine whether radiomic features extracted from a highly homogeneous database of breast MRI could non-invasively predict pathological complete responses (pCR) to neoadjuvant chemotherapy (NACT) in patients with breast cancer. Methods: One hundred patients with breast cancer receiving NACT in a single center (01/2017–06/2019) and undergoing breast MRI were retrospectively evaluated. For each patient, radiomic features were extracted within the biopsy-proven tumor on T1-weighted (T1-w) contrast-enhanced MRI performed before NACT. The pCR to NACT was determined based on the final surgical specimen. The association of clinical/biological and radiomic features with response to NACT was evaluated by univariate and multivariable analysis by using random forest and logistic regression. The performances of all models were assessed using the areas under the receiver operating characteristic curves (AUC) with 95% confidence intervals (CI). Results: Eighty-three patients (mean (SD) age, 47.26 (8.6) years) were included. Patients with HER2+, basal-like molecular subtypes and Ki67 ≥ 20% presented a pCR to NACT more frequently; the clinical/biological model’s AUC (95% CI) was 0.81 (0.71–0.90). Using 136 representative radiomics features selected through cluster analysis from the 1037 extracted features, a radiomic score was calculated to predict the response to NACT, with AUC (95% CI): 0.64 (0.51–0.75). After combining the clinical/biological and radiomics models, the AUC (95% CI) was 0.83 (0.73–0.92). Conclusions: MRI-based radiomic features slightly improved the pre-treatment prediction of pCR to NACT, in addiction to biological characteristics. If confirmed on larger cohorts, it could be helpful to identify such patients, to avoid unnecessary treatment.
KW - Breast cancer
KW - Magnetic resonance imaging
KW - Neoadjuvant chemotherapy
KW - Oncology
KW - Radiomics
UR - http://www.scopus.com/inward/record.url?scp=85113554202&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85113554202&partnerID=8YFLogxK
U2 - 10.3390/cancers13174271
DO - 10.3390/cancers13174271
M3 - Article
AN - SCOPUS:85113554202
VL - 13
JO - Cancers
JF - Cancers
SN - 2072-6694
IS - 17
M1 - 4271
ER -