Reciprocal congenic lines for a major stroke QTL on rat chromosome 1

Speranza Rubattu, Norbert Hubner, Ursula Ganten, Anna Evangelista, Rosita Stanzione, Emanuele Di Angelantonio, Ralph Plehm, Reika Langanki, Elisabetta Gianazza, Luigi Sironi, Giulia D'Amati, Massimo Volpe

Research output: Contribution to journalArticlepeer-review

Abstract

We previously identified a quantitative trait locus (QTL) for stroke proneness between the kallikrein (Klk) and Mt1pa markers on rat chromosome 1. To gain functional insights, we constructed congenic strains by introgressing either the whole or selected chromosomal segments from the strokeprone (SHRsp) onto the stroke-resistant (SHRsr) spontaneously hypertensive rat genome and vice versa. The phenotype was the latency to develop stroke under a Japanese high-salt, low-potassium diet for 3 mo [known as Japanese diet (JD)]. Blood pressure (BP) was measured by tail cuff throughout the experiment. Urinary protein excretion was monitored in all lines under JD. The SHRsp-derived lines carrying the SHRsr allele, and particularly the D1Rat134-Mt1pa chromosomal segment, had a significant delay of stroke occurrence and improved survival compared with SHRsp (P <0.001). On the other hand, a significant occurrence of stroke events (20%) was detected in the reciprocal lines by the end of the 3-mo treatment with JD (P = 0.003). The stroke phenotype was also associated with increased proteinuria. Our results underscore the functional importance of the Chr 1 stroke QTL. Furthermore, they underscore the utility of stroke/congenic lines in dissecting the genetics of stroke.

Original languageEnglish
Pages (from-to)108-113
Number of pages6
JournalPhysiol Genomics
Volume27
Issue number2
DOIs
Publication statusPublished - Oct 11 2006

Keywords

  • Functional genomics
  • Genetics
  • Quantitative trait locus

ASJC Scopus subject areas

  • Physiology
  • Genetics

Fingerprint

Dive into the research topics of 'Reciprocal congenic lines for a major stroke QTL on rat chromosome 1'. Together they form a unique fingerprint.

Cite this