TY - JOUR
T1 - Recombinant C1 inhibitor in brain ischemic injury
AU - Gesuete, Raffaella
AU - Storini, Claudio
AU - Fantin, Alessandro
AU - Stravalaci, Matteo
AU - Zanier, Elisa R.
AU - Orsini, Franca
AU - Vietsch, Helene
AU - Mannesse, M. L Maurice
AU - Ziere, Bertjan
AU - Gobbi, Marco
AU - De Simoni, Maria Grazia
PY - 2009
Y1 - 2009
N2 - Objective: C1 inhibitor (C1-INH) is an endogenous inhibitor of complement and kinin systems. We have explored the efficacy and the therapeutic window of the recently available human recombinant (rh) C1-INH on ischemic brain injury and investigated its mechanism of action in comparison with that of plasma-derived (pd) C1-INH. Methods: rhC1-INH was administered intravenously to C57Bl/6 mice undergoing transient or permanent ischemia, and its protective effects were evaluated by measuring infarct volume and neurodegeneration. The binding profiles of rhC1-INH and pdC1-INH were assessed in vitro using surface plasmon resonance. Their localization in the ischemic brain tissue was determined by immunohistochemistry and confocal analysis. The functional consequences of rhC1-INH and pdC1-INH administration on complement activation were analyzed by enzyme-linked immunosorbent assay on plasma samples. Results: rhC1-INH markedly reduced cerebral damage when administered up to 18 hours after transient ischemia and up to 6 hours after permanent ischemia, thus showing a surprisingly wide therapeutic window. In vitro rhC1-INH bound mannosebinding lectin (MBL), a key protein in the lectin complement pathway, with high affinity, whereas pdC1-INH, which has a different glycosylation pattern, did not. In the ischemic brain, rhC1-INH was confined to cerebral vessels, where it colocalized with MBL, whereas pdC1-INH diffused into the brain parenchyma. In addition, rhC1-INH was more active than pdC1-INH in inhibiting MBL-induced complement activation. Interpretation: rhC1-INH showed a surprisingly wider time window of efficacy compared with the corresponding plasmatic protein. We propose that the superiority of rhC1-INH is due to its selective binding to MBL, which emerged as a novel target for stroke treatment.
AB - Objective: C1 inhibitor (C1-INH) is an endogenous inhibitor of complement and kinin systems. We have explored the efficacy and the therapeutic window of the recently available human recombinant (rh) C1-INH on ischemic brain injury and investigated its mechanism of action in comparison with that of plasma-derived (pd) C1-INH. Methods: rhC1-INH was administered intravenously to C57Bl/6 mice undergoing transient or permanent ischemia, and its protective effects were evaluated by measuring infarct volume and neurodegeneration. The binding profiles of rhC1-INH and pdC1-INH were assessed in vitro using surface plasmon resonance. Their localization in the ischemic brain tissue was determined by immunohistochemistry and confocal analysis. The functional consequences of rhC1-INH and pdC1-INH administration on complement activation were analyzed by enzyme-linked immunosorbent assay on plasma samples. Results: rhC1-INH markedly reduced cerebral damage when administered up to 18 hours after transient ischemia and up to 6 hours after permanent ischemia, thus showing a surprisingly wide therapeutic window. In vitro rhC1-INH bound mannosebinding lectin (MBL), a key protein in the lectin complement pathway, with high affinity, whereas pdC1-INH, which has a different glycosylation pattern, did not. In the ischemic brain, rhC1-INH was confined to cerebral vessels, where it colocalized with MBL, whereas pdC1-INH diffused into the brain parenchyma. In addition, rhC1-INH was more active than pdC1-INH in inhibiting MBL-induced complement activation. Interpretation: rhC1-INH showed a surprisingly wider time window of efficacy compared with the corresponding plasmatic protein. We propose that the superiority of rhC1-INH is due to its selective binding to MBL, which emerged as a novel target for stroke treatment.
UR - http://www.scopus.com/inward/record.url?scp=70350077340&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350077340&partnerID=8YFLogxK
U2 - 10.1002/ana.21740
DO - 10.1002/ana.21740
M3 - Article
C2 - 19798727
AN - SCOPUS:70350077340
VL - 66
SP - 332
EP - 342
JO - Annals of Neurology
JF - Annals of Neurology
SN - 0364-5134
IS - 3
ER -