Recombinant HPV16 E7 assembled into particles induces an immune response and specific tumour protection administered without adjuvant in an animal model

Linda Petrone, Maria G. Ammendolia, Armando Cesolini, Stefano Caimi, Fabiana Superti, Colomba Giorgi, Paola Di Bonito

Research output: Contribution to journalArticlepeer-review

Abstract

Background: The HPV16 E7 protein is both a tumour-specific and a tumour-rejection antigen, the ideal target for developing therapeutic vaccines for the treatment of HPV16-associated cancer and its precursor lesions. E7, which plays a key role in virus-associated carcinogenesis, contains 98 amino acids and has two finger-type structures which bind a Zn++ ion. The ability of an Escherichia coli-produced E7-preparation, assembled into particles, to induce protective immunity against a HPV16-related tumour in the TC-1-C57BL/6 mouse tumour model, was evaluated.Methods: E7 was expressed in E. coli, purified via a one-step denaturing protocol and prepared as a soluble suspension state after dialysis in native buffer. The presence in the E7 preparation of particulate forms was analysed by non-reducing SDS-PAGE and negative staining electron microscopy (EM). The Zn++ ion content was analysed by mass-spectrometry. Ten μg of protein per mouse was administered to groups of animals, once, twice or three times without adjuvant. The E7-specific humoral response was monitored in mice sera using an E7-based ELISA while the cell-mediated immune response was analysed in mice splenocytes with lymphoproliferation and IFN-γ ELISPOT assays. The E7 immunized mice were challenged with TC-1 tumour cells and the tumour growth monitored for two months.Results: In western blot analysis E7 appears in multimers and high molecular mass oligomers. The EM micrographs show the protein dispersed as aggregates of different shape and size. The protein appears clustered in micro-, nano-aggregates, and structured particles. Mice immunised with this protein preparation show a significant E7-specific humoral and cell-mediated immune response of mixed Th1/Th2 type. The mice are fully protected from the tumour growth after vaccination with three E7-doses of 10 μg without any added adjuvant.Conclusions: This report shows that a particulate form of HPV16 E7 is able to induce, without adjuvant, an E7-specific tumour protection in C57BL/6 mice. The protective immunity is sustained by both humoral and cell-mediated immune responses. The E. coli-derived HPV16 E7 assembled in vitro into micro- and nanoparticles represents not only a good substrate for antigen-presenting cell uptake and processing, but also a cost-effective means for the production of a new generation of HPV subunit vaccines.

Original languageEnglish
Article number69
JournalJournal of Translational Medicine
Volume9
DOIs
Publication statusPublished - May 18 2011

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Fingerprint Dive into the research topics of 'Recombinant HPV16 E7 assembled into particles induces an immune response and specific tumour protection administered without adjuvant in an animal model'. Together they form a unique fingerprint.

Cite this