Reduced growth and skeletal changes in zinc-deficient growing rats are due to impaired growth plate activity and inanition

Laura Rossi, Silvia Migliaccio, Alessandro Corsi, Marilena Marzia, Paolo Bianco, Anna Teti, Loretta Gambelli, Stefano Cianfarani, Flavio Paoletti, Francesco Branca

Research output: Contribution to journalArticlepeer-review

Abstract

We investigated the effects of dietary zinc deficiency on skeletal metabolism in an animal model. Thirty 21-d-old male Sprague-Dawley rats were fed for 28 d either a zinc-deficient (ZD) diet (1 mg zinc/kg) or a normal diet ad libitum (AL, 50 mg zinc/kg) or in the same quantity as the ZD (pair-fed, PF). Only in the ZD group were general physical signs of zinc deficiency observed. Compared with the AL and PF rats, ZD rats showed significantly lower mean values in ponderal growth rate, femur weight and length, circulating levels of insulin-like growth factor-1, bone mechanical properties and concentration of zinc and, on histomorphometry, a decrease in the thicknesses of the overall growth plate and hypertrophic cartilage. In contrast, although bone volume was significantly lower in the ZD and PF rats than in the AL rats, no difference was observed between the ZD and PF rats. Osteoclast surface/bone surface and osteoclast number/bone surface ratios were significantly greater in PF rats than in the other two groups and not different in ZD and AL rats. Collectively, these data indicate that zinc deficiency has profound effects on the skeletal system of growing rats. In particular, the effects of zinc deficiency on bone growth and mass are the result of the reduced activity of the growth plate, likely mediated by impairment in the insulin-like growth factor-1 system. We did not demonstrate an effect on bone mass via increased bone resorption.

Original languageEnglish
Pages (from-to)1142-1146
Number of pages5
JournalJournal of Nutrition
Volume131
Issue number4
Publication statusPublished - 2001

Keywords

  • Growth cartilage
  • Histomorphometry
  • Rats
  • Zinc deficiency

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Food Science

Fingerprint Dive into the research topics of 'Reduced growth and skeletal changes in zinc-deficient growing rats are due to impaired growth plate activity and inanition'. Together they form a unique fingerprint.

Cite this