Redundant and synergistic information transfer in cardiovascular and cardiorespiratory variability

Luca Faes, Alberto Porta, Giandomenico Nollo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In the framework of information dynamics, new tools are emerging which allow one to quantify how the information provided by two source processes about a target process results from the contribution of each source and from the interaction between the sources. We present the first implementation of these tools in the assessment of short-term cardiovascular and cardiorespiratory variability, by introducing two strategies for the decomposition of the information transferred to heart period (HP) variability from systolic arterial pressure (SAP) and respiration flow (RF) variability. Several measures based on the notion of transfer entropy (TE) are defined to quantify joint, individual and redundant/synergistic information transfer, and are then estimated from the series of HP, SAP and RF obtained from healthy subjects during head-up tilt and paced breathing protocols. Our results show that the proposed information decomposition methods provide an enhanced view on cardiovascular and cardiorespiratory regulation.

Original languageEnglish
Title of host publicationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4033-4036
Number of pages4
Volume2015-November
ISBN (Print)9781424492718
DOIs
Publication statusPublished - Nov 4 2015
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: Aug 25 2015Aug 29 2015

Other

Other37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period8/25/158/29/15

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Redundant and synergistic information transfer in cardiovascular and cardiorespiratory variability'. Together they form a unique fingerprint.

Cite this