Reference frames for spinal proprioception: Kinematics based or kinetics based?

G. Bosco, R. E. Poppele

Research output: Contribution to journalArticle

Abstract

This second paper of the series deals with another issue regarding sensorimotor representations in the CNS that has received much attention, namely the relative weighting of kinematic and kinetic representations. The question we address here is the contribution of muscle tension afferent information in dorsal spinocerebellar tract (DSCT) sensory representations of foot position. In five anesthetized cats, we activated major hindlimb muscle groups using electrical stimulation of ventral root filaments while passively positioning of the left hind foot throughout its workspace. In general, as the parameters of the joint angle covariance planes indicated, muscle stimulation did not significantly change hindlimb geometry. We analyzed the effects of the muscle stimulation on DSCT neuronal activity within the framework of a kinematic-based representation of foot position. We used a multivariate regression model described in the companion paper, wherein indicators of the experimental condition were added as firing rate predictors along with the limb axis length and orientation to account for possible effects of muscle stimulation. The results indicated that the response gain of 35/59 neurons studied (59%) was not changed by the muscle activations, although most neurons showed some change in their overall firing level with stimulation of one or more muscles. Most of the neurons responded to pseudorandom stimulation of the same muscle groups with complex temporal patterns of activity. For a subpopulation of 42 neurons, we investigated the extent to which their representation of foot position was affected by a rigid constraint of the knee joint and at least one type of muscle stimulation. Although they could be divided into four subgroups based on significance level cutoffs for the constraint or stimulation effect, these effects were in fact quite distributed. However, when we examined the preferred directions of spatial tuning relative to the limb axis position, we found it was unchanged by muscle stimulation for most cells. Even in those cases in which response gain was altered by muscle stimulation, the cell's preferred direction generally was unaltered. The invariance of preferred direction with muscle stimulation lead us to the conclusion that the reference frame for DSCT coding may be based primarily on limb kinematics.

Original languageEnglish
Pages (from-to)2946-2955
Number of pages10
JournalJournal of Neurophysiology
Volume83
Issue number5
Publication statusPublished - 2000

Fingerprint

Proprioception
Biomechanical Phenomena
Muscles
Spinocerebellar Tracts
Foot
Neurons
Extremities
Hindlimb
Muscle Tonus
Spinal Nerve Roots
Knee Joint
Muscle Cells
Electric Stimulation
Cats
Joints

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

Reference frames for spinal proprioception : Kinematics based or kinetics based? / Bosco, G.; Poppele, R. E.

In: Journal of Neurophysiology, Vol. 83, No. 5, 2000, p. 2946-2955.

Research output: Contribution to journalArticle

Bosco, G. ; Poppele, R. E. / Reference frames for spinal proprioception : Kinematics based or kinetics based?. In: Journal of Neurophysiology. 2000 ; Vol. 83, No. 5. pp. 2946-2955.
@article{69517659b70547dc8619eb54de3c3404,
title = "Reference frames for spinal proprioception: Kinematics based or kinetics based?",
abstract = "This second paper of the series deals with another issue regarding sensorimotor representations in the CNS that has received much attention, namely the relative weighting of kinematic and kinetic representations. The question we address here is the contribution of muscle tension afferent information in dorsal spinocerebellar tract (DSCT) sensory representations of foot position. In five anesthetized cats, we activated major hindlimb muscle groups using electrical stimulation of ventral root filaments while passively positioning of the left hind foot throughout its workspace. In general, as the parameters of the joint angle covariance planes indicated, muscle stimulation did not significantly change hindlimb geometry. We analyzed the effects of the muscle stimulation on DSCT neuronal activity within the framework of a kinematic-based representation of foot position. We used a multivariate regression model described in the companion paper, wherein indicators of the experimental condition were added as firing rate predictors along with the limb axis length and orientation to account for possible effects of muscle stimulation. The results indicated that the response gain of 35/59 neurons studied (59{\%}) was not changed by the muscle activations, although most neurons showed some change in their overall firing level with stimulation of one or more muscles. Most of the neurons responded to pseudorandom stimulation of the same muscle groups with complex temporal patterns of activity. For a subpopulation of 42 neurons, we investigated the extent to which their representation of foot position was affected by a rigid constraint of the knee joint and at least one type of muscle stimulation. Although they could be divided into four subgroups based on significance level cutoffs for the constraint or stimulation effect, these effects were in fact quite distributed. However, when we examined the preferred directions of spatial tuning relative to the limb axis position, we found it was unchanged by muscle stimulation for most cells. Even in those cases in which response gain was altered by muscle stimulation, the cell's preferred direction generally was unaltered. The invariance of preferred direction with muscle stimulation lead us to the conclusion that the reference frame for DSCT coding may be based primarily on limb kinematics.",
author = "G. Bosco and Poppele, {R. E.}",
year = "2000",
language = "English",
volume = "83",
pages = "2946--2955",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Reference frames for spinal proprioception

T2 - Kinematics based or kinetics based?

AU - Bosco, G.

AU - Poppele, R. E.

PY - 2000

Y1 - 2000

N2 - This second paper of the series deals with another issue regarding sensorimotor representations in the CNS that has received much attention, namely the relative weighting of kinematic and kinetic representations. The question we address here is the contribution of muscle tension afferent information in dorsal spinocerebellar tract (DSCT) sensory representations of foot position. In five anesthetized cats, we activated major hindlimb muscle groups using electrical stimulation of ventral root filaments while passively positioning of the left hind foot throughout its workspace. In general, as the parameters of the joint angle covariance planes indicated, muscle stimulation did not significantly change hindlimb geometry. We analyzed the effects of the muscle stimulation on DSCT neuronal activity within the framework of a kinematic-based representation of foot position. We used a multivariate regression model described in the companion paper, wherein indicators of the experimental condition were added as firing rate predictors along with the limb axis length and orientation to account for possible effects of muscle stimulation. The results indicated that the response gain of 35/59 neurons studied (59%) was not changed by the muscle activations, although most neurons showed some change in their overall firing level with stimulation of one or more muscles. Most of the neurons responded to pseudorandom stimulation of the same muscle groups with complex temporal patterns of activity. For a subpopulation of 42 neurons, we investigated the extent to which their representation of foot position was affected by a rigid constraint of the knee joint and at least one type of muscle stimulation. Although they could be divided into four subgroups based on significance level cutoffs for the constraint or stimulation effect, these effects were in fact quite distributed. However, when we examined the preferred directions of spatial tuning relative to the limb axis position, we found it was unchanged by muscle stimulation for most cells. Even in those cases in which response gain was altered by muscle stimulation, the cell's preferred direction generally was unaltered. The invariance of preferred direction with muscle stimulation lead us to the conclusion that the reference frame for DSCT coding may be based primarily on limb kinematics.

AB - This second paper of the series deals with another issue regarding sensorimotor representations in the CNS that has received much attention, namely the relative weighting of kinematic and kinetic representations. The question we address here is the contribution of muscle tension afferent information in dorsal spinocerebellar tract (DSCT) sensory representations of foot position. In five anesthetized cats, we activated major hindlimb muscle groups using electrical stimulation of ventral root filaments while passively positioning of the left hind foot throughout its workspace. In general, as the parameters of the joint angle covariance planes indicated, muscle stimulation did not significantly change hindlimb geometry. We analyzed the effects of the muscle stimulation on DSCT neuronal activity within the framework of a kinematic-based representation of foot position. We used a multivariate regression model described in the companion paper, wherein indicators of the experimental condition were added as firing rate predictors along with the limb axis length and orientation to account for possible effects of muscle stimulation. The results indicated that the response gain of 35/59 neurons studied (59%) was not changed by the muscle activations, although most neurons showed some change in their overall firing level with stimulation of one or more muscles. Most of the neurons responded to pseudorandom stimulation of the same muscle groups with complex temporal patterns of activity. For a subpopulation of 42 neurons, we investigated the extent to which their representation of foot position was affected by a rigid constraint of the knee joint and at least one type of muscle stimulation. Although they could be divided into four subgroups based on significance level cutoffs for the constraint or stimulation effect, these effects were in fact quite distributed. However, when we examined the preferred directions of spatial tuning relative to the limb axis position, we found it was unchanged by muscle stimulation for most cells. Even in those cases in which response gain was altered by muscle stimulation, the cell's preferred direction generally was unaltered. The invariance of preferred direction with muscle stimulation lead us to the conclusion that the reference frame for DSCT coding may be based primarily on limb kinematics.

UR - http://www.scopus.com/inward/record.url?scp=0034115095&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034115095&partnerID=8YFLogxK

M3 - Article

C2 - 10805690

AN - SCOPUS:0034115095

VL - 83

SP - 2946

EP - 2955

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 5

ER -