Reference frames for spinal proprioception: Limb endpoint based or joint-level based?

G. Bosco, R. E. Poppele, J. Eian

Research output: Contribution to journalArticle

Abstract

Many sensorimotor neurons in the CNS encode global parameters of limb movement and posture rather than specific muscle or joint parameters. Our investigations of spinocerebellar activity have demonstrated that these second-order spinal neurons also may encode proprioceptive information in a limb based rather than joint-based reference frame. However, our finding that each foot position was determined by a unique combination of joint angles in the passive limb made it difficult to distinguish unequivocally between a limb-based and a joint-based representation. In this study, we decoupled foot position from limb geometry by applying mechanical constraints to individual hindlimb joints in anesthetized cats. We quantified the effect of the joint constraints on limb geometry by analyzing joint-angle covariance in the free and constrained conditions. One type of constraint, a rigid constraint of the knee angle, both changed the covariance pattern and significantly reduced the strength of joint-angle covariance. The other type, an elastic constraint of the ankle angle, changed only the covariance pattern and not its overall strength. We studied the effect of these constraints on the activity in 70 dorsal spinocerebellar tract (DSCT) neurons using a multivariate regression model, with limb axis length and orientation as predictors of neuronal activity. This model also included an experimental condition indicator variable that allowed significant intercept or slope changes in the relationships between foot position parameters and neuronal activity to be determined across conditions. The result of this analysis was that the spatial tuning of 37/70 neurons (53%) was unaffected by the constraints, suggesting that they were somehow able to signal foot position independently from the specific joint angles. We also investigated the extent to which cell activity represented individual joint angles by means of a regression model based on a linear combination of joint angles. A backward elimination of the insignificant predictors determined the set of independent joint angles that best described the neuronal activity for each experimental condition. Finally, by comparing the results of these two approaches, we could determine whether a DSCT neuron represented foot position, specific joint angles, or none of these variables consistently. We found that 10/70 neurons (14%) represented one or more specific joint-angles. The activity of another 27 neurons (39%) was significantly affected by limb geometry changes, but 33 neurons (47%) consistently elaborated a foot position representation in the coordinates of the limb axis.

Original languageEnglish
Pages (from-to)2931-2945
Number of pages15
JournalJournal of Neurophysiology
Volume83
Issue number5
Publication statusPublished - 2000

Fingerprint

Proprioception
Extremities
Joints
Neurons
Foot
Spinocerebellar Tracts
Spatial Analysis
Hindlimb
Posture
Ankle

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

Reference frames for spinal proprioception : Limb endpoint based or joint-level based? / Bosco, G.; Poppele, R. E.; Eian, J.

In: Journal of Neurophysiology, Vol. 83, No. 5, 2000, p. 2931-2945.

Research output: Contribution to journalArticle

Bosco, G, Poppele, RE & Eian, J 2000, 'Reference frames for spinal proprioception: Limb endpoint based or joint-level based?', Journal of Neurophysiology, vol. 83, no. 5, pp. 2931-2945.
Bosco, G. ; Poppele, R. E. ; Eian, J. / Reference frames for spinal proprioception : Limb endpoint based or joint-level based?. In: Journal of Neurophysiology. 2000 ; Vol. 83, No. 5. pp. 2931-2945.
@article{cf610cc463304089928c73f60ffb0cbd,
title = "Reference frames for spinal proprioception: Limb endpoint based or joint-level based?",
abstract = "Many sensorimotor neurons in the CNS encode global parameters of limb movement and posture rather than specific muscle or joint parameters. Our investigations of spinocerebellar activity have demonstrated that these second-order spinal neurons also may encode proprioceptive information in a limb based rather than joint-based reference frame. However, our finding that each foot position was determined by a unique combination of joint angles in the passive limb made it difficult to distinguish unequivocally between a limb-based and a joint-based representation. In this study, we decoupled foot position from limb geometry by applying mechanical constraints to individual hindlimb joints in anesthetized cats. We quantified the effect of the joint constraints on limb geometry by analyzing joint-angle covariance in the free and constrained conditions. One type of constraint, a rigid constraint of the knee angle, both changed the covariance pattern and significantly reduced the strength of joint-angle covariance. The other type, an elastic constraint of the ankle angle, changed only the covariance pattern and not its overall strength. We studied the effect of these constraints on the activity in 70 dorsal spinocerebellar tract (DSCT) neurons using a multivariate regression model, with limb axis length and orientation as predictors of neuronal activity. This model also included an experimental condition indicator variable that allowed significant intercept or slope changes in the relationships between foot position parameters and neuronal activity to be determined across conditions. The result of this analysis was that the spatial tuning of 37/70 neurons (53{\%}) was unaffected by the constraints, suggesting that they were somehow able to signal foot position independently from the specific joint angles. We also investigated the extent to which cell activity represented individual joint angles by means of a regression model based on a linear combination of joint angles. A backward elimination of the insignificant predictors determined the set of independent joint angles that best described the neuronal activity for each experimental condition. Finally, by comparing the results of these two approaches, we could determine whether a DSCT neuron represented foot position, specific joint angles, or none of these variables consistently. We found that 10/70 neurons (14{\%}) represented one or more specific joint-angles. The activity of another 27 neurons (39{\%}) was significantly affected by limb geometry changes, but 33 neurons (47{\%}) consistently elaborated a foot position representation in the coordinates of the limb axis.",
author = "G. Bosco and Poppele, {R. E.} and J. Eian",
year = "2000",
language = "English",
volume = "83",
pages = "2931--2945",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Reference frames for spinal proprioception

T2 - Limb endpoint based or joint-level based?

AU - Bosco, G.

AU - Poppele, R. E.

AU - Eian, J.

PY - 2000

Y1 - 2000

N2 - Many sensorimotor neurons in the CNS encode global parameters of limb movement and posture rather than specific muscle or joint parameters. Our investigations of spinocerebellar activity have demonstrated that these second-order spinal neurons also may encode proprioceptive information in a limb based rather than joint-based reference frame. However, our finding that each foot position was determined by a unique combination of joint angles in the passive limb made it difficult to distinguish unequivocally between a limb-based and a joint-based representation. In this study, we decoupled foot position from limb geometry by applying mechanical constraints to individual hindlimb joints in anesthetized cats. We quantified the effect of the joint constraints on limb geometry by analyzing joint-angle covariance in the free and constrained conditions. One type of constraint, a rigid constraint of the knee angle, both changed the covariance pattern and significantly reduced the strength of joint-angle covariance. The other type, an elastic constraint of the ankle angle, changed only the covariance pattern and not its overall strength. We studied the effect of these constraints on the activity in 70 dorsal spinocerebellar tract (DSCT) neurons using a multivariate regression model, with limb axis length and orientation as predictors of neuronal activity. This model also included an experimental condition indicator variable that allowed significant intercept or slope changes in the relationships between foot position parameters and neuronal activity to be determined across conditions. The result of this analysis was that the spatial tuning of 37/70 neurons (53%) was unaffected by the constraints, suggesting that they were somehow able to signal foot position independently from the specific joint angles. We also investigated the extent to which cell activity represented individual joint angles by means of a regression model based on a linear combination of joint angles. A backward elimination of the insignificant predictors determined the set of independent joint angles that best described the neuronal activity for each experimental condition. Finally, by comparing the results of these two approaches, we could determine whether a DSCT neuron represented foot position, specific joint angles, or none of these variables consistently. We found that 10/70 neurons (14%) represented one or more specific joint-angles. The activity of another 27 neurons (39%) was significantly affected by limb geometry changes, but 33 neurons (47%) consistently elaborated a foot position representation in the coordinates of the limb axis.

AB - Many sensorimotor neurons in the CNS encode global parameters of limb movement and posture rather than specific muscle or joint parameters. Our investigations of spinocerebellar activity have demonstrated that these second-order spinal neurons also may encode proprioceptive information in a limb based rather than joint-based reference frame. However, our finding that each foot position was determined by a unique combination of joint angles in the passive limb made it difficult to distinguish unequivocally between a limb-based and a joint-based representation. In this study, we decoupled foot position from limb geometry by applying mechanical constraints to individual hindlimb joints in anesthetized cats. We quantified the effect of the joint constraints on limb geometry by analyzing joint-angle covariance in the free and constrained conditions. One type of constraint, a rigid constraint of the knee angle, both changed the covariance pattern and significantly reduced the strength of joint-angle covariance. The other type, an elastic constraint of the ankle angle, changed only the covariance pattern and not its overall strength. We studied the effect of these constraints on the activity in 70 dorsal spinocerebellar tract (DSCT) neurons using a multivariate regression model, with limb axis length and orientation as predictors of neuronal activity. This model also included an experimental condition indicator variable that allowed significant intercept or slope changes in the relationships between foot position parameters and neuronal activity to be determined across conditions. The result of this analysis was that the spatial tuning of 37/70 neurons (53%) was unaffected by the constraints, suggesting that they were somehow able to signal foot position independently from the specific joint angles. We also investigated the extent to which cell activity represented individual joint angles by means of a regression model based on a linear combination of joint angles. A backward elimination of the insignificant predictors determined the set of independent joint angles that best described the neuronal activity for each experimental condition. Finally, by comparing the results of these two approaches, we could determine whether a DSCT neuron represented foot position, specific joint angles, or none of these variables consistently. We found that 10/70 neurons (14%) represented one or more specific joint-angles. The activity of another 27 neurons (39%) was significantly affected by limb geometry changes, but 33 neurons (47%) consistently elaborated a foot position representation in the coordinates of the limb axis.

UR - http://www.scopus.com/inward/record.url?scp=0034074617&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034074617&partnerID=8YFLogxK

M3 - Article

C2 - 10805689

AN - SCOPUS:0034074617

VL - 83

SP - 2931

EP - 2945

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 5

ER -