Retinal dysfunction characterizes subtypes of dominant optic atrophy

M.L. Cascavilla, V. Parisi, G. Triolo, L. Ziccardi, E. Borrelli, A. Di Renzo, N. Balducci, C. Lamperti, S. Bianchi Marzoli, F. Darvizeh, A.A. Sadun, V. Carelli, F. Bandello, P. Barboni

Research output: Contribution to journalArticle

Abstract

Purpose: To assess preganglionic retinal function using multifocal electroretinogram (mfERG) in patients affected by dominant optic atrophy (DOA) stratified by OPA1 gene mutation. Methods: Multifocal electroretinogram (mfERG) was recorded in 18 DOA patients (DOA group, 35 eyes) and 25 age-matched healthy subjects (control group, 25 eyes). Patients were stratified in two groups based on gene mutation: missense mutation (DOA-M group, 11 eyes) and mutation causing haploinsufficiency (DOA-H group, 24 eyes). The mfERG N1-P1 response amplitude density (RAD) has been evaluated in five annular retinal areas with different eccentricity from the fovea (ring 1: 0–5 degrees, R1; ring 2: 5–10 degrees, R2; ring 3: 10–15 degrees, R3; ring 4: 15–20 degrees, R4; and ring 5: 20–25 degrees, R5) and in eight sectors on the basis of the retinal topography: temporal–superior (TS), temporal–inferior (TI), nasal–superior (NS) and nasal–inferior (NI), temporal (T), superior (S), nasal (N) and inferior (I). Results: Compared to controls, DOA group revealed a significant reduction in N1-P1 RADs values in R1-R4 rings and in TI, NS and N sectors [analysis of variance (ANOVA), p 
Original languageEnglish
Pages (from-to)e156-e163
JournalActa Ophthalmologica
Volume96
Issue number2
DOIs
Publication statusPublished - 2018

Fingerprint

Autosomal Dominant Optic Atrophy
Mutation
Haploinsufficiency
Missense Mutation
Nose
Genes
Analysis of Variance
Healthy Volunteers
Control Groups

Keywords

  • dominant optic atrophy
  • multifocal electroretinogram
  • OPA1 gene
  • photoreceptors
  • retinal topography
  • adolescent
  • adult
  • aged
  • Article
  • autosomal dominant optic atrophy
  • child
  • controlled study
  • electroretinogram
  • gene
  • genotype phenotype correlation
  • haploinsufficiency
  • human
  • major clinical study
  • missense mutation
  • preganglionic retinal impairment
  • priority journal
  • retina disease
  • retina fovea
  • electroretinography
  • female
  • genetics
  • male
  • middle aged
  • mutation
  • pathology
  • pathophysiology
  • retina
  • retina ganglion cell
  • visual field
  • guanosine triphosphatase
  • OPA1 protein, human
  • Adolescent
  • Adult
  • Aged
  • Child
  • Electroretinography
  • Female
  • GTP Phosphohydrolases
  • Humans
  • Male
  • Middle Aged
  • Mutation
  • Optic Atrophy, Autosomal Dominant
  • Retina
  • Retinal Diseases
  • Retinal Ganglion Cells
  • Visual Fields

Cite this

Cascavilla, M. L., Parisi, V., Triolo, G., Ziccardi, L., Borrelli, E., Di Renzo, A., ... Barboni, P. (2018). Retinal dysfunction characterizes subtypes of dominant optic atrophy. Acta Ophthalmologica, 96(2), e156-e163. https://doi.org/10.1111/aos.13557

Retinal dysfunction characterizes subtypes of dominant optic atrophy. / Cascavilla, M.L.; Parisi, V.; Triolo, G.; Ziccardi, L.; Borrelli, E.; Di Renzo, A.; Balducci, N.; Lamperti, C.; Bianchi Marzoli, S.; Darvizeh, F.; Sadun, A.A.; Carelli, V.; Bandello, F.; Barboni, P.

In: Acta Ophthalmologica, Vol. 96, No. 2, 2018, p. e156-e163.

Research output: Contribution to journalArticle

Cascavilla, ML, Parisi, V, Triolo, G, Ziccardi, L, Borrelli, E, Di Renzo, A, Balducci, N, Lamperti, C, Bianchi Marzoli, S, Darvizeh, F, Sadun, AA, Carelli, V, Bandello, F & Barboni, P 2018, 'Retinal dysfunction characterizes subtypes of dominant optic atrophy', Acta Ophthalmologica, vol. 96, no. 2, pp. e156-e163. https://doi.org/10.1111/aos.13557
Cascavilla, M.L. ; Parisi, V. ; Triolo, G. ; Ziccardi, L. ; Borrelli, E. ; Di Renzo, A. ; Balducci, N. ; Lamperti, C. ; Bianchi Marzoli, S. ; Darvizeh, F. ; Sadun, A.A. ; Carelli, V. ; Bandello, F. ; Barboni, P. / Retinal dysfunction characterizes subtypes of dominant optic atrophy. In: Acta Ophthalmologica. 2018 ; Vol. 96, No. 2. pp. e156-e163.
@article{32e56e728f3c4fc4a7b42c076116ba0f,
title = "Retinal dysfunction characterizes subtypes of dominant optic atrophy",
abstract = "Purpose: To assess preganglionic retinal function using multifocal electroretinogram (mfERG) in patients affected by dominant optic atrophy (DOA) stratified by OPA1 gene mutation. Methods: Multifocal electroretinogram (mfERG) was recorded in 18 DOA patients (DOA group, 35 eyes) and 25 age-matched healthy subjects (control group, 25 eyes). Patients were stratified in two groups based on gene mutation: missense mutation (DOA-M group, 11 eyes) and mutation causing haploinsufficiency (DOA-H group, 24 eyes). The mfERG N1-P1 response amplitude density (RAD) has been evaluated in five annular retinal areas with different eccentricity from the fovea (ring 1: 0–5 degrees, R1; ring 2: 5–10 degrees, R2; ring 3: 10–15 degrees, R3; ring 4: 15–20 degrees, R4; and ring 5: 20–25 degrees, R5) and in eight sectors on the basis of the retinal topography: temporal–superior (TS), temporal–inferior (TI), nasal–superior (NS) and nasal–inferior (NI), temporal (T), superior (S), nasal (N) and inferior (I). Results: Compared to controls, DOA group revealed a significant reduction in N1-P1 RADs values in R1-R4 rings and in TI, NS and N sectors [analysis of variance (ANOVA), p ",
keywords = "dominant optic atrophy, multifocal electroretinogram, OPA1 gene, photoreceptors, retinal topography, adolescent, adult, aged, Article, autosomal dominant optic atrophy, child, controlled study, electroretinogram, gene, genotype phenotype correlation, haploinsufficiency, human, major clinical study, missense mutation, preganglionic retinal impairment, priority journal, retina disease, retina fovea, electroretinography, female, genetics, male, middle aged, mutation, pathology, pathophysiology, retina, retina ganglion cell, visual field, guanosine triphosphatase, OPA1 protein, human, Adolescent, Adult, Aged, Child, Electroretinography, Female, GTP Phosphohydrolases, Humans, Male, Middle Aged, Mutation, Optic Atrophy, Autosomal Dominant, Retina, Retinal Diseases, Retinal Ganglion Cells, Visual Fields",
author = "M.L. Cascavilla and V. Parisi and G. Triolo and L. Ziccardi and E. Borrelli and {Di Renzo}, A. and N. Balducci and C. Lamperti and {Bianchi Marzoli}, S. and F. Darvizeh and A.A. Sadun and V. Carelli and F. Bandello and P. Barboni",
note = "Cited By :1 Export Date: 25 January 2019 Correspondence Address: Barboni, P.; Scientific Institute San Raffaele Via OlgettinaItaly; email: p.barboni@studiodazeglio.it Chemicals/CAS: guanosine triphosphatase, 9059-32-9; GTP Phosphohydrolases; OPA1 protein, human References: Aijaz, S., Erskine, L., Jeffery, G., Bhattacharya, S.S., Votruba, M., Developmental expression profile of the optic atrophy gene product: OPA1 is not localized exclusively in the mammalian retinal ganglion cell layer (2004) Invest Ophthalmol Vis Sci, 45, pp. 1667-1673; Alavi, M.V., Bette, S., Schimpf, S., A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy (2007) Brain, 130, pp. 1029-1042; Alexander, C., Votruba, M., Pesch, U.E., OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 (2000) Nat Genet, 26, pp. 211-215; Barboni, P., Savini, G., Cascavilla, M., Early macular retinal ganglion cell loss in dominant optic atrophy: genotype-phenotype correlation (2014) Am J Ophthalmol, 158, pp. 628-636; Barboni, P., Savini, G., Parisi, V., Retinal nerve fiber layer thickness in dominant optic atrophy measurements by optical coherence tomography and correlation with age (2011) Ophthalmology, 118, pp. 2076-2080; Barnard, A.R., Charbel Issa, P., Perganta, G., Williams, P.A., Davies, V.J., Sejaran, S., Votruba, M., MacLaren, R.E., Specific deficits in visual electrophysiology in a mouse model of dominant optic atrophy (2011) Exp Eye Res, 93, pp. 771-777; Bearse, M.A., Jr., Sutter, E.E., Imaging localized retinal dysfunction with the multifocal electroretinogram (1996) J Opt Soc Am A Opt Image Sci Vis, 13, pp. 634-640; Bertholet, A.M., Millet, A.M., Guillermin, O., Daloyau, M., Davezac, N., Miquel, M.C., Belenguer, P., OPA1 loss of function affects in vitro neuronal maturation (2013) Brain, 136, pp. 1518-1533; Chan, H.H., Detection of glaucomatous damage using multifocal ERG (2005) Clin Exp Optom, 88, pp. 410-414; Chan, H.H., Brown, B., Pilot study of the multifocal electroretinogram in ocular hypertension (2000) Br J Ophthalmol, 84, pp. 1147-1153; Chan, H.H., Ng, Y.F., Chu, P.H., Applications of the multifocal electroretinogram in the detection of glaucoma (2011) Clin Exp Optom, 94, pp. 247-258; Delettre, C., Lenaers, G., Griffoin, J.M., Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy (2000) Nat Genet, 26, pp. 207-210; Granse, L., Bergstrand, I., Thiselton, D., Ponjavic, V., Heijl, A., Votruba, M., Andr{\'e}asson, S., Electrophysiology and ocular blood flow in a family with dominant optic nerve atrophy and a mutation in the OPA1 gene (2003) Ophthalmic Genet, 24, pp. 233-245; Heiduschka, P., Schnichels, S., Fuhrmann, N., Hofmeister, S., Schraermeyer, U., Wissinger, B., Alavi, M.V., Electrophysiological and histologic assessment of retinal ganglion cell fate in a mouse model for OPA1-associated autosomal dominant optic atrophy (2010) Invest Ophthalmol Vis Sci, 51, pp. 1424-1431; Heynen, H., Wachtmeister, L., van Norren, D., Origin of the oscillatory potentials in the primate retina (1985) Vision Res, 25, pp. 1365-1373; Holder, G.E., Votruba, M., Carter, A.C., Bhattacharya, S.S., Fitzke, F.W., Moore, A.T., Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter (1998) Doc Ophthalmol, 95, pp. 217-228; Hood, D.C., Assessing retinal function with the multifocal technique (2000) Prog Retin Eye Res, 19, pp. 607-646; Hood, D.C., Odel, J.G., Chen, C.S., Winn, B.J., The multifocal electroretinogram (2003) J Neuroophthalmol, 23, pp. 225-235; Hood, D.C., Bach, M., Brigell, M., ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition) (2012) Doc Ophthalmol, 124, pp. 1-13; Lenaers, G., Hamel, C., Delettre, C., Amati-Bonneau, P., Procaccio, V., Bonneau, D., Reynier, P., Milea, D., Dominant optic atrophy (2012) Orphanet J Rare Dis, 7, p. 46; Liskova, P., Tesarova, M., Dudakova, L., Svecova, S., Kolarova, H., Honzik, T., Seto, S., Votruba, M., OPA1 analysis in an international series of probands with bilateral optic atrophy (2017) Acta Ophthalmol, 95, pp. 363-369; Miyata, K., Nakamura, M., Kondo, M., Lin, J., Ueno, S., Miyake, Y., Terasaki, H., Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations (2007) Invest Ophthalmol Vis Sci, 48, pp. 820-824; Morny, E.K., Margrain, T.H., Binns, A.M., Votruba, M., Electrophysiological ON and OFF responses in autosomal dominant optic atrophy (2015) Invest Ophthalmol Vis Sci, 56, pp. 7629-7637; Parisi, V., Ziccardi, L., Stifano, G., Montrone, L., Gallinaro, G., Falsini, B., Impact of regional retinal responses on cortical visually evoked responses: multifocal ERGs and VEPs in the retinitis pigmentosa model (2010) Clin Neurophysiol, 121, pp. 380-385; Parisi, V., Ziccardi, L., Centofanti, M., Tanga, L., Gallinaro, G., Falsini, B., Bucci, M.G., Macular function in eyes with open-angle glaucoma evaluated by multifocal electroretinogram (2012) Invest Ophthalmol Vis Sci, 53, pp. 6973-6980; Rangaswamy, N.V., Zhou, W., Harwerth, R.S., Frishman, L.J., Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG (2006) Invest Ophthalmol Vis Sci, 47, pp. 753-767; Rangaswamy, N.V., Shirato, S., Kaneko, M., Digby, B.I., Robson, J.G., Frishman, L.J., Effects of spectral characteristics of ganzfeld stimuli on the photopic negative response (PhNR) of the ERG (2007) Invest Ophthalmol Vis Sci, 48, pp. 4818-4828; Reis, A., Mateus, C., Viegas, T., Florijn, R., Bergen, A., Silva, E., Castelo-Branco, M., Physiological evidence for impairment in autosomal dominant optic atrophy at the pre-ganglion level (2013) Graefes Arch Clin Exp Ophthalmol, 251, pp. 221-234; Viswanathan, S., Frishman, L.J., Robson, J.G., Harwerth, R.S., Smith, E.L., III, The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma (1999) Invest Ophthalmol Vis Sci, 40, pp. 1124-1136; Votruba, M., Fitzke, F.W., Holder, G.E., Carter, A., Bhattacharya, S.S., Moore, A.T., Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy (1998) Arch Ophthalmol, 116, pp. 351-358; Wilsey, L.J., Fortune, B., Electroretinography in glaucoma diagnosis (2016) Curr Opin Ophthalmol, 27, pp. 118-124; Yu-Wai-Man, P., Griffiths, P.G., Chinnery, P.F., Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies (2011) Prog Retin Eye Res, 30, pp. 81-114",
year = "2018",
doi = "10.1111/aos.13557",
language = "English",
volume = "96",
pages = "e156--e163",
journal = "Acta Ophthalmologica",
issn = "1755-375X",
publisher = "Wiley-Blackwell Publishing Ltd",
number = "2",

}

TY - JOUR

T1 - Retinal dysfunction characterizes subtypes of dominant optic atrophy

AU - Cascavilla, M.L.

AU - Parisi, V.

AU - Triolo, G.

AU - Ziccardi, L.

AU - Borrelli, E.

AU - Di Renzo, A.

AU - Balducci, N.

AU - Lamperti, C.

AU - Bianchi Marzoli, S.

AU - Darvizeh, F.

AU - Sadun, A.A.

AU - Carelli, V.

AU - Bandello, F.

AU - Barboni, P.

N1 - Cited By :1 Export Date: 25 January 2019 Correspondence Address: Barboni, P.; Scientific Institute San Raffaele Via OlgettinaItaly; email: p.barboni@studiodazeglio.it Chemicals/CAS: guanosine triphosphatase, 9059-32-9; GTP Phosphohydrolases; OPA1 protein, human References: Aijaz, S., Erskine, L., Jeffery, G., Bhattacharya, S.S., Votruba, M., Developmental expression profile of the optic atrophy gene product: OPA1 is not localized exclusively in the mammalian retinal ganglion cell layer (2004) Invest Ophthalmol Vis Sci, 45, pp. 1667-1673; Alavi, M.V., Bette, S., Schimpf, S., A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy (2007) Brain, 130, pp. 1029-1042; Alexander, C., Votruba, M., Pesch, U.E., OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 (2000) Nat Genet, 26, pp. 211-215; Barboni, P., Savini, G., Cascavilla, M., Early macular retinal ganglion cell loss in dominant optic atrophy: genotype-phenotype correlation (2014) Am J Ophthalmol, 158, pp. 628-636; Barboni, P., Savini, G., Parisi, V., Retinal nerve fiber layer thickness in dominant optic atrophy measurements by optical coherence tomography and correlation with age (2011) Ophthalmology, 118, pp. 2076-2080; Barnard, A.R., Charbel Issa, P., Perganta, G., Williams, P.A., Davies, V.J., Sejaran, S., Votruba, M., MacLaren, R.E., Specific deficits in visual electrophysiology in a mouse model of dominant optic atrophy (2011) Exp Eye Res, 93, pp. 771-777; Bearse, M.A., Jr., Sutter, E.E., Imaging localized retinal dysfunction with the multifocal electroretinogram (1996) J Opt Soc Am A Opt Image Sci Vis, 13, pp. 634-640; Bertholet, A.M., Millet, A.M., Guillermin, O., Daloyau, M., Davezac, N., Miquel, M.C., Belenguer, P., OPA1 loss of function affects in vitro neuronal maturation (2013) Brain, 136, pp. 1518-1533; Chan, H.H., Detection of glaucomatous damage using multifocal ERG (2005) Clin Exp Optom, 88, pp. 410-414; Chan, H.H., Brown, B., Pilot study of the multifocal electroretinogram in ocular hypertension (2000) Br J Ophthalmol, 84, pp. 1147-1153; Chan, H.H., Ng, Y.F., Chu, P.H., Applications of the multifocal electroretinogram in the detection of glaucoma (2011) Clin Exp Optom, 94, pp. 247-258; Delettre, C., Lenaers, G., Griffoin, J.M., Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy (2000) Nat Genet, 26, pp. 207-210; Granse, L., Bergstrand, I., Thiselton, D., Ponjavic, V., Heijl, A., Votruba, M., Andréasson, S., Electrophysiology and ocular blood flow in a family with dominant optic nerve atrophy and a mutation in the OPA1 gene (2003) Ophthalmic Genet, 24, pp. 233-245; Heiduschka, P., Schnichels, S., Fuhrmann, N., Hofmeister, S., Schraermeyer, U., Wissinger, B., Alavi, M.V., Electrophysiological and histologic assessment of retinal ganglion cell fate in a mouse model for OPA1-associated autosomal dominant optic atrophy (2010) Invest Ophthalmol Vis Sci, 51, pp. 1424-1431; Heynen, H., Wachtmeister, L., van Norren, D., Origin of the oscillatory potentials in the primate retina (1985) Vision Res, 25, pp. 1365-1373; Holder, G.E., Votruba, M., Carter, A.C., Bhattacharya, S.S., Fitzke, F.W., Moore, A.T., Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter (1998) Doc Ophthalmol, 95, pp. 217-228; Hood, D.C., Assessing retinal function with the multifocal technique (2000) Prog Retin Eye Res, 19, pp. 607-646; Hood, D.C., Odel, J.G., Chen, C.S., Winn, B.J., The multifocal electroretinogram (2003) J Neuroophthalmol, 23, pp. 225-235; Hood, D.C., Bach, M., Brigell, M., ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition) (2012) Doc Ophthalmol, 124, pp. 1-13; Lenaers, G., Hamel, C., Delettre, C., Amati-Bonneau, P., Procaccio, V., Bonneau, D., Reynier, P., Milea, D., Dominant optic atrophy (2012) Orphanet J Rare Dis, 7, p. 46; Liskova, P., Tesarova, M., Dudakova, L., Svecova, S., Kolarova, H., Honzik, T., Seto, S., Votruba, M., OPA1 analysis in an international series of probands with bilateral optic atrophy (2017) Acta Ophthalmol, 95, pp. 363-369; Miyata, K., Nakamura, M., Kondo, M., Lin, J., Ueno, S., Miyake, Y., Terasaki, H., Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations (2007) Invest Ophthalmol Vis Sci, 48, pp. 820-824; Morny, E.K., Margrain, T.H., Binns, A.M., Votruba, M., Electrophysiological ON and OFF responses in autosomal dominant optic atrophy (2015) Invest Ophthalmol Vis Sci, 56, pp. 7629-7637; Parisi, V., Ziccardi, L., Stifano, G., Montrone, L., Gallinaro, G., Falsini, B., Impact of regional retinal responses on cortical visually evoked responses: multifocal ERGs and VEPs in the retinitis pigmentosa model (2010) Clin Neurophysiol, 121, pp. 380-385; Parisi, V., Ziccardi, L., Centofanti, M., Tanga, L., Gallinaro, G., Falsini, B., Bucci, M.G., Macular function in eyes with open-angle glaucoma evaluated by multifocal electroretinogram (2012) Invest Ophthalmol Vis Sci, 53, pp. 6973-6980; Rangaswamy, N.V., Zhou, W., Harwerth, R.S., Frishman, L.J., Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG (2006) Invest Ophthalmol Vis Sci, 47, pp. 753-767; Rangaswamy, N.V., Shirato, S., Kaneko, M., Digby, B.I., Robson, J.G., Frishman, L.J., Effects of spectral characteristics of ganzfeld stimuli on the photopic negative response (PhNR) of the ERG (2007) Invest Ophthalmol Vis Sci, 48, pp. 4818-4828; Reis, A., Mateus, C., Viegas, T., Florijn, R., Bergen, A., Silva, E., Castelo-Branco, M., Physiological evidence for impairment in autosomal dominant optic atrophy at the pre-ganglion level (2013) Graefes Arch Clin Exp Ophthalmol, 251, pp. 221-234; Viswanathan, S., Frishman, L.J., Robson, J.G., Harwerth, R.S., Smith, E.L., III, The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma (1999) Invest Ophthalmol Vis Sci, 40, pp. 1124-1136; Votruba, M., Fitzke, F.W., Holder, G.E., Carter, A., Bhattacharya, S.S., Moore, A.T., Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy (1998) Arch Ophthalmol, 116, pp. 351-358; Wilsey, L.J., Fortune, B., Electroretinography in glaucoma diagnosis (2016) Curr Opin Ophthalmol, 27, pp. 118-124; Yu-Wai-Man, P., Griffiths, P.G., Chinnery, P.F., Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies (2011) Prog Retin Eye Res, 30, pp. 81-114

PY - 2018

Y1 - 2018

N2 - Purpose: To assess preganglionic retinal function using multifocal electroretinogram (mfERG) in patients affected by dominant optic atrophy (DOA) stratified by OPA1 gene mutation. Methods: Multifocal electroretinogram (mfERG) was recorded in 18 DOA patients (DOA group, 35 eyes) and 25 age-matched healthy subjects (control group, 25 eyes). Patients were stratified in two groups based on gene mutation: missense mutation (DOA-M group, 11 eyes) and mutation causing haploinsufficiency (DOA-H group, 24 eyes). The mfERG N1-P1 response amplitude density (RAD) has been evaluated in five annular retinal areas with different eccentricity from the fovea (ring 1: 0–5 degrees, R1; ring 2: 5–10 degrees, R2; ring 3: 10–15 degrees, R3; ring 4: 15–20 degrees, R4; and ring 5: 20–25 degrees, R5) and in eight sectors on the basis of the retinal topography: temporal–superior (TS), temporal–inferior (TI), nasal–superior (NS) and nasal–inferior (NI), temporal (T), superior (S), nasal (N) and inferior (I). Results: Compared to controls, DOA group revealed a significant reduction in N1-P1 RADs values in R1-R4 rings and in TI, NS and N sectors [analysis of variance (ANOVA), p 

AB - Purpose: To assess preganglionic retinal function using multifocal electroretinogram (mfERG) in patients affected by dominant optic atrophy (DOA) stratified by OPA1 gene mutation. Methods: Multifocal electroretinogram (mfERG) was recorded in 18 DOA patients (DOA group, 35 eyes) and 25 age-matched healthy subjects (control group, 25 eyes). Patients were stratified in two groups based on gene mutation: missense mutation (DOA-M group, 11 eyes) and mutation causing haploinsufficiency (DOA-H group, 24 eyes). The mfERG N1-P1 response amplitude density (RAD) has been evaluated in five annular retinal areas with different eccentricity from the fovea (ring 1: 0–5 degrees, R1; ring 2: 5–10 degrees, R2; ring 3: 10–15 degrees, R3; ring 4: 15–20 degrees, R4; and ring 5: 20–25 degrees, R5) and in eight sectors on the basis of the retinal topography: temporal–superior (TS), temporal–inferior (TI), nasal–superior (NS) and nasal–inferior (NI), temporal (T), superior (S), nasal (N) and inferior (I). Results: Compared to controls, DOA group revealed a significant reduction in N1-P1 RADs values in R1-R4 rings and in TI, NS and N sectors [analysis of variance (ANOVA), p 

KW - dominant optic atrophy

KW - multifocal electroretinogram

KW - OPA1 gene

KW - photoreceptors

KW - retinal topography

KW - adolescent

KW - adult

KW - aged

KW - Article

KW - autosomal dominant optic atrophy

KW - child

KW - controlled study

KW - electroretinogram

KW - gene

KW - genotype phenotype correlation

KW - haploinsufficiency

KW - human

KW - major clinical study

KW - missense mutation

KW - preganglionic retinal impairment

KW - priority journal

KW - retina disease

KW - retina fovea

KW - electroretinography

KW - female

KW - genetics

KW - male

KW - middle aged

KW - mutation

KW - pathology

KW - pathophysiology

KW - retina

KW - retina ganglion cell

KW - visual field

KW - guanosine triphosphatase

KW - OPA1 protein, human

KW - Adolescent

KW - Adult

KW - Aged

KW - Child

KW - Electroretinography

KW - Female

KW - GTP Phosphohydrolases

KW - Humans

KW - Male

KW - Middle Aged

KW - Mutation

KW - Optic Atrophy, Autosomal Dominant

KW - Retina

KW - Retinal Diseases

KW - Retinal Ganglion Cells

KW - Visual Fields

U2 - 10.1111/aos.13557

DO - 10.1111/aos.13557

M3 - Article

VL - 96

SP - e156-e163

JO - Acta Ophthalmologica

JF - Acta Ophthalmologica

SN - 1755-375X

IS - 2

ER -