Role of Major Endocannabinoid-Binding Receptors during Mouse Oocyte Maturation

Sandra Cecconi, Gianna Rossi, Sergio Oddi, Valentina Di Nisio, Mauro Maccarrone

Research output: Contribution to journalArticlepeer-review


Endocannabinoids are key-players of female fertility and potential biomarkers of reproductive dysfunctions. Here, we investigated localization and expression of cannabinoid receptor type-1 and -2 (CB1R and CB2R), G-protein coupled receptor 55 (GPR55), and transient receptor potential vanilloid type 1 channel (TRPV1) in mouse oocytes collected at different stages of in vivo meiotic maturation (germinal vesicle, GV; metaphase I, MI; metaphase II, MII) through qPCR, confocal imaging, and western blot. Despite the significant decrease in CB1R, CB2R, and GPR55 mRNAs occurring from GV to MII, CB2R and GPR55 protein contents increased during the same period. At GV, only CB1R was localized in oolemma, but it completely disappeared at MI. TRPV1 was always undetectable. When oocytes were in vitro matured with CB1R and CB2R but not GPR55 antagonists, a significant delay of GV breakdown occurred, sustained by elevated intraoocyte cAMP concentration. Although CBRs antagonists did not affect polar body I emission or chromosome alignment, GPR55 antagonist impaired in ~75% of oocytes the formation of normal-sized MI and MII spindles. These findings open a new avenue to interrogate oocyte pathophysiology and offer potentially new targets for the therapy of reproductive alterations.

Original languageEnglish
JournalInternational Journal of Molecular Sciences
Issue number12
Publication statusPublished - Jun 12 2019


  • endocannabinoids
  • meiosis
  • oocyte
  • receptors
  • signal transduction

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Role of Major Endocannabinoid-Binding Receptors during Mouse Oocyte Maturation'. Together they form a unique fingerprint.

Cite this