Role of miRNAs in alzheimer's disease and possible fields of application

Research output: Contribution to journalReview articlepeer-review


miRNAs (or microRNAs) are a class of single-stranded RNA molecules, responsible for post-transcriptional gene silencing through binding to the coding region as well as 3’ and 5’ untranslated region of target genes. About 70% of experimentally detectable miRNAs are expressed in the brain and some studies suggest that miRNAs are intimately involved in synaptic function and in specific signals during memory formation. More and more evidence demonstrates the possible involvement of miRNAs in Alzheimer's disease (AD). AD is the most common form of senile dementia, a disease that affects memory and cognitive functions. It is a neurodegenerative disorder characterized by loss of synapses, extracellular amyloid plaques composed of the amyloid-β peptide (Aβ), and intracellular aggregates of hyperphosphorylated TAU protein. This review aims to provide an overview of the in vivo studies of the last 5 years in the literature describing the role of the different miRNAs involved in AD. miRNAs hold huge potential as diagnostic and prognostic biomarkers and, at the same time, their modulation could be a potential therapeutic strategy against AD.

Original languageEnglish
Article number3979
JournalInternational Journal of Molecular Sciences
Issue number16
Publication statusPublished - Aug 2 2019


  • Alzheimer’s disease
  • In vivo experimental models
  • MiRNA

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Role of miRNAs in alzheimer's disease and possible fields of application'. Together they form a unique fingerprint.

Cite this