TY - JOUR
T1 - SARS-CoV-2 complete genome sequencing from the Italian Campania region using a highly automated next generation sequencing system
AU - Rachiglio, Anna Maria
AU - De Sabato, Luca
AU - Roma, Cristin
AU - Cennamo, Michele
AU - Fiorenza, Mariano
AU - Terracciano, Daniela
AU - Pasquale, Raffaella
AU - Bergantino, Francesca
AU - Cavalcanti, Ernesta
AU - Botti, Gerardo
AU - Vaccari, Gabriele
AU - Portella, Giuseppe
AU - Normanno, Nicola
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Since the first complete genome sequencing of SARS-CoV-2 in December 2019, more than 550,000 genomes have been submitted into the GISAID database. Sequencing of the SARS-CoV-2 genome might allow identification of variants with increased contagiousness, different clinical patterns and/or different response to vaccines. A highly automated next generation sequencing (NGS)-based method might facilitate an active genomic surveillance of the virus. Methods: RNA was extracted from 27 nasopharyngeal swabs obtained from citizens of the Italian Campania region in March–April 2020 who tested positive for SARS-CoV-2. Following viral RNA quantification, sequencing was performed using the Ion AmpliSeq SARS-CoV-2 Research Panel on the Genexus Integrated Sequencer, an automated technology for library preparation and sequencing. The SARS-CoV-2 complete genomes were built using the pipeline SARS-CoV-2 RECoVERY (REconstruction of COronaVirus gEnomes & Rapid analYsis) and analysed by IQ-TREE software. Results: The complete genome (100%) of SARS-CoV-2 was successfully obtained for 21/27 samples. In particular, the complete genome was fully sequenced for all 15 samples with high viral titer (> 200 copies/µl), for the two samples with a viral genome copy number < 200 but greater than 20, and for 4/10 samples with a viral load < 20 viral copies. The complete genome sequences classified into the B.1 and B.1.1 SARS-CoV-2 lineages. In comparison to the reference strain Wuhan-Hu-1, 48 total nucleotide variants were observed with 26 non-synonymous substitutions, 18 synonymous and 4 reported in untranslated regions (UTRs). Ten of the 26 non-synonymous variants were observed in ORF1ab, 7 in S, 1 in ORF3a, 2 in M and 6 in N genes. Conclusions: The Genexus system resulted successful for SARS-CoV-2 complete genome sequencing, also in cases with low viral copies. The use of this highly automated system might facilitate the standardization of SARS-CoV-2 sequencing protocols and make faster the identification of novel variants during the pandemic.
AB - Background: Since the first complete genome sequencing of SARS-CoV-2 in December 2019, more than 550,000 genomes have been submitted into the GISAID database. Sequencing of the SARS-CoV-2 genome might allow identification of variants with increased contagiousness, different clinical patterns and/or different response to vaccines. A highly automated next generation sequencing (NGS)-based method might facilitate an active genomic surveillance of the virus. Methods: RNA was extracted from 27 nasopharyngeal swabs obtained from citizens of the Italian Campania region in March–April 2020 who tested positive for SARS-CoV-2. Following viral RNA quantification, sequencing was performed using the Ion AmpliSeq SARS-CoV-2 Research Panel on the Genexus Integrated Sequencer, an automated technology for library preparation and sequencing. The SARS-CoV-2 complete genomes were built using the pipeline SARS-CoV-2 RECoVERY (REconstruction of COronaVirus gEnomes & Rapid analYsis) and analysed by IQ-TREE software. Results: The complete genome (100%) of SARS-CoV-2 was successfully obtained for 21/27 samples. In particular, the complete genome was fully sequenced for all 15 samples with high viral titer (> 200 copies/µl), for the two samples with a viral genome copy number < 200 but greater than 20, and for 4/10 samples with a viral load < 20 viral copies. The complete genome sequences classified into the B.1 and B.1.1 SARS-CoV-2 lineages. In comparison to the reference strain Wuhan-Hu-1, 48 total nucleotide variants were observed with 26 non-synonymous substitutions, 18 synonymous and 4 reported in untranslated regions (UTRs). Ten of the 26 non-synonymous variants were observed in ORF1ab, 7 in S, 1 in ORF3a, 2 in M and 6 in N genes. Conclusions: The Genexus system resulted successful for SARS-CoV-2 complete genome sequencing, also in cases with low viral copies. The use of this highly automated system might facilitate the standardization of SARS-CoV-2 sequencing protocols and make faster the identification of novel variants during the pandemic.
KW - Campania region
KW - Covid-19
KW - Next generation sequencing
KW - SARS-CoV-2 genome
UR - http://www.scopus.com/inward/record.url?scp=85107214079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107214079&partnerID=8YFLogxK
U2 - 10.1186/s12967-021-02912-4
DO - 10.1186/s12967-021-02912-4
M3 - Article
AN - SCOPUS:85107214079
VL - 19
JO - Journal of Translational Medicine
JF - Journal of Translational Medicine
SN - 1479-5876
IS - 1
M1 - 246
ER -