Abstract
Original language | English |
---|---|
Article number | 3316 |
Pages (from-to) | 1-25 |
Number of pages | 25 |
Journal | Cancers |
Volume | 12 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- Cardioncology
- Cardiovascular diseases
- COVID-19
- Cytokines
- Inflammation
- Myocardial injury
Fingerprint
Dive into the research topics of 'SARS-CoV-2 infection and cardioncology: From cardiometabolic risk factors to outcomes in cancer patients'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
SARS-CoV-2 infection and cardioncology: From cardiometabolic risk factors to outcomes in cancer patients. / Quagliariello, V.; Bonelli, A.; Caronna, A.; Conforti, G.; Iovine, M.; Carbone, A.; Berretta, M.; Botti, G.; Maurea, N.
In: Cancers, Vol. 12, No. 11, 3316, 2020, p. 1-25.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - SARS-CoV-2 infection and cardioncology: From cardiometabolic risk factors to outcomes in cancer patients
AU - Quagliariello, V.
AU - Bonelli, A.
AU - Caronna, A.
AU - Conforti, G.
AU - Iovine, M.
AU - Carbone, A.
AU - Berretta, M.
AU - Botti, G.
AU - Maurea, N.
N1 - Export Date: 19 February 2021 Correspondence Address: Quagliariello, V.; Division of Cardiology, Italy; email: v.quagliariello@istitutotumori.na.it Correspondence Address: Maurea, N.; Division of Cardiology, Italy; email: n.maurea@istitutotumori.na.it Funding text 1: Funding: This work was funded by an “Ricerca Corrente” grant from the Italian Ministry of Health. “Cardiotossicità dei trattamenti antineoplastici: identificazione precoce e strategie di cardioprotezione” Project code: M1/5-C. References: Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Gu, X., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China (2020) Lancet, 395, pp. 497-506. , [CrossRef]; Green, M.S., Did the hesitancy in declaring COVID-19 a pandemic reflect a need to redefine the term? (2020) Lancet, , [CrossRef]; Cárdenas-Conejo, Y., Liñan-Rico, A., García-Rodríguez, D.A., Centeno-Leija, S., Serrano-Posada, H., An exclusive 42 amino acid signature in pp1ab protein provides insights into the evolutive history of the 2019 novel human-pathogenic coronavirus (SARS-CoV2) (2020) J. Med. Virol, , [CrossRef] [PubMed]; Perrella, A., Carannante, N., Berretta, M., Rinaldi, M., Maturo, N., Rinaldi, L., Novel Coronavirus 2019 (Sars-CoV2): A global emergency that needs new approaches? (2020) Eur. Rev. Med. Pharmacol. Sci, 24, pp. 2162-2164. , [CrossRef]; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Lim, W., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med, 348, pp. 1953-1966. , [CrossRef]; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med, 367, pp. 1814-1820. , [CrossRef]; Ceccarelli, M., Berretta, M., Venanzi Rullo, E., Nunnari, G., Cacopardo, B., Differences and similarities between Severe Acute Respiratory Syndrome (SARS)-CoronaVirus (CoV) and SARS-CoV-2. Would a rose by another name smell as sweet? (2020) Eur. Rev. Med. Pharmacol. Sci, 24, pp. 2781-2783. , [CrossRef]; Chen, C., Zhou, Y., Wang, D.W., SARS-CoV-2: A potential novel etiology of fulminant myocarditis (2020) Herz, , [CrossRef]; Zheng, Y.Y., Ma, Y.T., Zhang, J.Y., Xie, X., COVID-19 and the cardiovascular system (2020) Nat. Rev. Cardiol, , [CrossRef]; Ji, D., Qin, E., Xu, J., Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study (2020) J. Hepatol, 73, pp. 451-453. , [CrossRef]; Abrams, E.M., W’t Jong, G., Yang, C.L., Asthma and COVID-19 (2020) CMAJ, 192, p. E551. , [CrossRef] [PubMed]; Singh, A.K., Gupta, R., Ghosh, A., Misra, A., Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations (2020) Diabetes Metab. Syndr, 14, pp. 303-310. , [CrossRef] [PubMed]; Ruan, Y., Guo, Y., Zheng, Y., Huang, Z., Sun, S., Kowal, P., Shi, Y., Wu, F., Cardiovascular disease (CVD) and associated risk factors among older adults in six low-and middle-income countries: Results from SAGE Wave 1 (2018) BMC Public Health, 18, p. 778. , [CrossRef]; Jacobs, L.A., Shulman, L.N., Follow-up care of cancer survivors: Challenges and solutions (2017) Lancet Oncol, 18, pp. e19-e29. , [CrossRef]; Zaim, S., Chong, J.H., Sankaranarayanan, V., Harky, A., COVID-19 and Multi-Organ Response (2020) Curr. Probl. Cardiol, p. 100618. , [CrossRef]; Chen, C., Chen, C., Yan, J.T., Zhou, N., Zhao, J.P., Wang, D.W., Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19 (2020) Zhonghua Xin Xue Guan Bing Za Zhi, 48, p. E008. , [CrossRef]; Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Zhao, Y., Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China (2020) JAMA, , [CrossRef]; Kang, D.H., Weaver, M.T., Park, N.J., Smith, B., McArdle, T., Carpenter, J., Significant impairment in immune recovery after cancer treatment (2009) Nurs. Res, 58, pp. 105-114. , [CrossRef]; Hijano, D.R., Maron, G., Hayden, R.T., Respiratory Viral Infections in Patients with Cancer or Undergoing Hematopoietic Cell Transplant (2018) Front. Microbiol, 9, p. 3097. , [CrossRef]; https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/specialty-guide-acute-treatment-cancer-23-march-2020.pdf, Available online: (accessed on 1 November 2020); Liang, W., Guan, W., Chen, R., Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China (2020) Lancet Oncol, 21, pp. 335-337. , [CrossRef]; Yu, J., Ouyang, W., Chua, M.L.K., Xie, C., SARS-CoV-2 Transmission in Patients with Cancer at a Tertiary Care Hospital in Wuhan, China (2020) JAMA Oncol, 6, pp. 1108-1110. , [CrossRef] [PubMed]; Guan, W.J., Liang, W.H., Zhao, Y., Liang, H.R., Chen, Z.S., Li, Y.M., Liu, X.Q., Wang, T., China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis (2020) Eur. Respir. J, 55, p. 2000547. , [CrossRef] [PubMed]; https://www.epicentro.iss.it/en/coronavirus/bollettino/Report-COVID-2019_20_april_2020.pdf, Characteristics of SARS-CoV-2 Patients Dying in Italy Report Based on Available Data on 20 April 2020. (accessed on 20 October 2020); Trapani, D., Marra, A., Curigliano, G., The experience on coronavirus disease 2019 and cancer from an oncology hub institution in Milan, Lombardy Region (2020) Eur. J. Cancer, 132, pp. 199-206. , [CrossRef] [PubMed]; Montopoli, M., Zumerle, S., Vettor, R., Rugge, M., Zorzi, M., Catapano, C.V., Carbone, G.M., Ragazzi, E., Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: A population-based study (n = 4532) (2020) Ann. Oncol, , [CrossRef]; Clinckemalie, L., Spans, L., Dubois, V., Laurent, M., Helsen, C., Joniau, S., Claessens, F., Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element (2013) Mol. Endocrinol, pp. 2028-2040. , [CrossRef]; de Rojas, T., Pérez-Martínez, A., Cela, E., Baragaño, M., Galán, V., Mata, C., Peretó, A., Madero, L., COVID-19 infection in children and adolescents with cancer in Madrid (2020) Pediatr. Blood Cancer, , [CrossRef]; Wu, Z., McGoogan, J.M., Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention (2020) JAMA, , [CrossRef]; Onder, G., Rezza, G., Brusaferro, S., Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy (2020) JAMA, 323, pp. 1775-1776. , [CrossRef]; Zhang, L., Zhu, F., Xie, L., Clinical characteristics of COVID-19-infected cancer patients: A retrospective case study in three hospitals within Wuhan, China (2020) Ann. Oncol, , [CrossRef]; Bonomi, L., Ghilardi, L., Arnoldi, E., Tondini, C.A., Bettini, A.C., A rapid fatal evolution of Coronavirus Disease-19 (COVID-19) in an advanced lung cancer patient with a long time response to nivolumab (2020) J. Thorac. Oncol, , [CrossRef]; He, W., Chen, L., Chen, L., Yuan, G., Fang, Y., Chen, W., Wu, D., Ma, Y., COVID-19 in persons with haematological cancers (2020) Leukemia, pp. 1-9. , [CrossRef] [PubMed]; Miyashita, H., Mikami, T., Chopra, N., Do Patients with Cancer Have a Poorer Prognosis of COVID-19? An Experience in New York City (2020) Ann. Oncol, , [CrossRef] [PubMed]; Dai, M., Liu, D., Liu, M., Patients with Cancer Appear More Vulnerable to SARS-COV-2: A Multicenter Study during the COVID-19 Outbreak (2020) Cancer Discov, , [CrossRef]; Deng, G., Yin, M., Chen, X., Zeng, F., Clinical determinants for fatality of 44,672 patients with COVID-19 (2020) Crit. Care, 24, p. 179. , [CrossRef]; Mehta, P., McAuley, D.F., Brown, M., COVID-19: Consider cytokine storm syndromes and immunosuppression (2020) Lancet, 395, pp. 1033-1034. , [CrossRef]; Desai, A., Sachdeva, S., Parekh, T., Desai, R., COVID-19 and Cancer: Lessons from a Pooled Meta-Analysis (2020) JCO Glob. Oncol, 6, pp. 557-559. , [CrossRef]; Emami, A., Javanmardi, F., Pirbonyeh, N., Akbari, A., Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis (2020) Arch. Acad. Emerg. Med, 8, p. e35; Wang, B., Li, R., Lu, Z., Huang, Y., Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis (2020) Aging, 12, pp. 6049-6057. , [CrossRef]; Ganatra, S., Hammond, S.P., Nohria, A., The Novel Coronavirus Disease (COVID-19) Threat for Patients with Cardiovascular Disease and Cancer (2020) JACC CardioOncol, , [CrossRef]; Zordoky, B., Cardiovascular Vulnerability to COVID-19 in Cancer Survivors (2020) Preprints, , [CrossRef]; Zamorano, J.L., Lancellotti, P., Rodriguez Muñoz, D., Aboyans, V., Asteggiano, R., Galderisi, M., Habib, G., Lip, G.Y.H., ESC Scientific Document Group; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC) (2016) Eur. Heart J, 37, pp. 2768-2801. , [CrossRef] [PubMed]; Felker, G.M., Thompson, R.E., Hare, J.M., Hruban, R.H., Clemetson, D.E., Howard, D.L., Baughman, K.L., Kasper, E.K., Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy (2000) N. Engl. J. Med, 342, pp. 1077-1084. , [CrossRef] [PubMed]; Suter, T.M., Procter, M., van Veldhuisen, D.J., Muscholl, M., Bergh, J., Carlomagno, C., Perren, T., Klijn, J.G., Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial (2007) J. Clin. Oncol, 25, pp. 3859-3865. , [CrossRef] [PubMed]; Qi, W.X., Shen, Z., Tang, L.N., Yao, Y., Congestive heart failure risk in cancer patients treated with vascular endothelial growth factor tyrosine kinase inhibitors: A systematic review and meta-analysis of 36 clinical trials (2014) Br. J. Clin. Pharmacol, 78, pp. 748-762. , [CrossRef] [PubMed]; Maurea, N., Coppola, C., Piscopo, G., Galletta, F., Riccio, G., Esposito, E., De Lorenzo, C., Mercuro, G., Pathophysiology of cardiotoxicity from target therapy and angiogenesis inhibitors (2016) J. Cardiovasc. Med, 17, pp. S19-S26. , (Suppl. 1), [CrossRef]; Lendvai, N., Devlin, S., Patel, M., Knapp, K.M., Ekman, D., Grundberg, I., Chung, D.J., Lesokhin, A.M., Biomarkers of cardiotoxicity among multiple myeloma patients subsequently treated with proteasome inhibitor therapy (2015) Blood, 126, p. 4257. , [CrossRef]; Hu, J.R., Florido, R., Lipson, E.J., Naidoo, J., Ardehali, R., Tocchetti, C.G., Lyon, A.R., Moslehi, J., Cardiovascular toxicities associated with immune checkpoint inhibitors (2019) Cardiovasc. Res, 115, pp. 854-868. , [CrossRef]; Chen, J., Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer (2012) J. Am. Coll. Cardiol, 60, pp. 2504-2512. , [CrossRef]; Vivarelli, S., Falzone, L., Grillo, C.M., Scandurra, G., Torino, F., Libra, M., Cancer Management during COVID-19 Pandemic: Is Immune Checkpoint Inhibitors-Based Immunotherapy Harmful or Beneficial? (2020) Cancers, 12, p. 2237. , [CrossRef]; Vaddepally, R.K., Kharel, P., Pandey, R., Garje, R., Chandra, A.B., Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence (2020) Cancers, 12, p. 738. , [CrossRef]; Bersanelli, M., Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors (2020) Immunotherapy, 12, pp. 269-273. , [CrossRef] [PubMed]; Quagliariello, V., Passariello, M., Rea, D., Barbieri, A., Iovine, M., Bonelli, A., Caronna, A., Maurea, N., Evidences of CTLA-4 and PD-1 Blocking Agents-Induced Cardiotoxicity in Cellular and Preclinical Models (2020) J. Pers. Med, 10, p. 179. , [CrossRef] [PubMed]; Zhou, Y.-W., Zhu, Y.-J., Wang, M.-N., Xie, Y., Chen, C.-Y., Zhang, T., Xia, F., Liu, J.-Y., Immune checkpoint inhibitor-associated cardiotoxicity: Current understanding on its mechanism, diagnosis and management (2019) Front. Pharmacol, 10, p. 1350. , [CrossRef] [PubMed]; Palaskas, N.L., Lopez-Mattei, J., Durand, J.B., Iliescu, C., Deswal, A., Immune Checkpoint Inhibitor Myocarditis: Pathophysiological Characteristics, Diagnosis, and Treatment (2020) J. Am. Heart Assoc, 9, p. e013757. , [CrossRef]; Sullivan, R.J., Johnson, D.B., Rini, B., COVID-19 and immune checkpoint inhibitors: Initial considerations (2020) J. Immunother. Cancer, 8, p. e000933. , [CrossRef]; Gambichler, T., Reuther, J., Scheel, C.H., Becker, J.C., On the use of immune checkpoint inhibitors in patients with viral infections including COVID-19 (2020) J. Immunother. Cancer, 8, p. e001145. , [CrossRef]; Olejniczak, M., Schwartz, M., Webber, E., Shaffer, A., Perry, T.E., Viral Myocarditis-Incidence, Diagnosis and Management (2020) J. Cardiothorac. Vasc. Anesth, , [CrossRef]; Guillin, O.M., Vindry, C., Ohlmann, T., Chavatte, L., Selenium, Selenoproteins and Viral Infection (2019) Nutrients, 11, p. 2101. , [CrossRef]; Blauwet, L.A., Cooper, L.T., Myocarditis (2010) Prog. Cardiovasc. Dis, 52, pp. 274-288. , [CrossRef]; Tsatsakis, A., Calina, D., Falzone, L., Petrakis, D., Mitrut, R., Siokas, V., Pennisi, M., Doukas, S.G., SARS-CoV-2 pathophysiology and its clinical implications: An integrative overview of the pharmacotherapeutic management of COVID-19 (2020) Food Chem. Toxicol, 146, p. 111769. , [CrossRef]; Driggin, E., Madhavan, M.V., Bikdeli, B., Chuich, T., Laracy, J., Biondi-Zoccai, G., Brown, T.S., Haythe, J., Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic (2020) J. Am. Coll. Cardiol, 75, pp. 2352-2371. , [CrossRef] [PubMed]; Jain, S., Nolan, S.M., Singh, A.R., Lovig, L., Biller, R., Kamat, A., Brennan, M.H., Tatz, G., Myocarditis in Multisystem Inflammatory Syndrome in Children Associated with Coronavirus Disease 2019 (2020) Cardiol. Rev, 28, pp. 308-311. , [CrossRef] [PubMed]; Ganatra, S., Neilan, T.G., Immune Checkpoint Inhibitor-Associated Myocarditis (2018) Oncologist, 23, pp. 879-886. , [CrossRef] [PubMed]; Varricchi, G., Marone, G., Mercurio, V., Galdiero, M.R., Bonaduce, D., Tocchetti, C.G., Immune checkpoint inhibitors and cardiac toxicity: An emerging issue (2018) Curr. Med. Chem, 25, pp. 1327-1339. , [CrossRef] [PubMed]; Yun, S., Vincelette, N.D., Mansour, I., Hariri, D., Motamed, S., Late onset ipilimumab-induced pericarditis and pericardial effusion: A rare but life threatening complication (2015) Case Rep. Oncol. Med, 2015, pp. 1-5. , [CrossRef] [PubMed]; Salem, J.-E., Manouchehri, A., Moey, M., Lebrun-Vignes, B., Bastarache, L., Pariente, A., Gobert, A., Bonaca, M.P., Cardiovascular toxicities associated with immune checkpoint inhibitors: An observational, retrospective, pharmacovigilance study (2018) Lancet Oncol, 19, pp. 1579-1589. , [CrossRef]; Johnson, D.B., Balko, J.M., Compton, M.L., Chalkias, S., Gorham, J., Xu, Y., Hicks, M., Bloomer, T.L., Fulminant myocarditis with combination immune checkpoint blockade (2016) N. Engl. J. Med, 375, pp. 1749-1755. , [CrossRef]; Gürdoğan, M., Yalta, K., Myocarditis associated with immune checkpoint inhibitors: Practical considerations in diagnosis and management (2020) Anatol. J. Cardiol, 24, pp. 68-75. , [CrossRef]; Sakai, T., Yahagi, K., Hoshino, T., Yokota, T., Tanabe, K., Mori, M., Ikeda, S., Nivolumab-induced myocardial necrosis in a patient with lung cancer: A case report (2019) Respir. Med. Case Rep, 27, p. 100839. , [CrossRef]; Tang, N., Li, D., Wang, X., Sun, Z., Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia (2020) J. Thromb. Haemost, 18, pp. 844-847. , [CrossRef]; Klok, F.A., Kruip, M.J., van der Meer, N.J., Arbous, M.S., Gommers, D.A., Kant, K.M., Incidence of thrombotic complications in critically ill ICU patients with COVID-19 (2020) Thromb. Res, 191, pp. 145-147. , [CrossRef] [PubMed]; Farge, D., Frere, C., Connors, J.M., Ay, C., Khorana, A.A., Munoz, A., Brenner, B., Solymoss, S., International Initiative on Thrombosis and Cancer (ITAC) advisory panel. 2019 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer (2019) Lancet Oncol, 20, pp. e566-e581. , [CrossRef]; Maurea, N., Riva, L., Venous thromboembolism and atrial fibrillation in patients with cancer (2018) G. Ital. Cardiol, 9, pp. 3S-6S. , (Suppl. 1), [CrossRef]; Thompson, A., Morgan, C., Smith, P., Jones, C., Ball, H., Coulthard, E.J., Moran, E., Rice, C.M., Cerebral venous sinus thrombosis associated with COVID-19 (2020) Pract. Neurol, , [CrossRef]; Rali, P., O’Corragain, O., Oresanya, L., Yu, D., Sheriff, O., Weiss, R., Myers, C., Stack, A., Temple University COVID-19 Research Group. Incidence of venous thromboembolism in coronavirus disease 2019: An experience from a single large academic center (2020) J. Vasc. Surg. Venous Lymphat. Disord, , [CrossRef] [PubMed]; Mosarla, R.C., Vaduganathan, M., Qamar, A., Moslehi, J., Piazza, G., Giugliano, R.P., Anticoagulation Strategies in Patients with Cancer: JACC Review Topic of the Week (2019) J. Am. Coll. Cardiol, 73, pp. 1336-1349. , [CrossRef]; Khorana, A.A., Kuderer, N.M., Culakova, E., Lyman, G.H., Francis, C.W., Development and validation of a predictive model for chemotherapy-associated thrombosis (2008) Blood, 111, pp. 4902-4907. , [CrossRef]; Aryal, M.R., Gosain, R., Donato, A., Pathak, R., Bhatt, V.R., Katel, A., Kouides, P., Venous Thromboembolism in COVID-19: Towards an Ideal Approach to Thromboprophylaxis, Screening, and Treatment (2020) Curr. Cardiol. Rep, 22, p. 52. , [CrossRef]; Iba, T., Levy, J.H., Levi, M., Thachil, J., Coagulopathy in COVID-19 (2020) J. Thromb. Haemost, , [CrossRef]; Connors, J.M., Levy, J.H., COVID-19 and its implications for thrombosis and anticoagulation (2020) Blood, 135, pp. 2033-2040. , [CrossRef]; Al-Samkari, H., Karp Leaf, R.S., Dzik, W.H., Carlson, J.C.T., Fogerty, A.E., Waheed, A., Goodarzi, K., Leaf, D., COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection (2020) Blood, 136, pp. 489-500. , [CrossRef]; Strongman, H., Gadd, S., Matthews, A., Mansfield, K.E., Stanway, S., Lyon, A.R., Dos-Santos-Silva, I., Bhaskaran, K., Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: A population-based cohort study using multiple linked UK electronic health records databases (2019) Lancet, 394, pp. 1041-1054. , [CrossRef]; Kvolik, S., Jukic, M., Matijevic, M., Marjanovic, K., Glavas-Obrovac, L., An overview of coagulation disorders in cancer patients (2010) Surg. Oncol, 19, pp. e33-e46. , [CrossRef] [PubMed]; Rugbjerg, K., Mellemkjaer, L., Boice, J.D., Køber, L., Ewertz, M., Olsen, J.H., Cardiovascular disease in survivors of adolescent and young adult cancer: A Danish cohort study, 1943–2009 (2014) J. Natl. Cancer Inst, 106, p. dju110. , [CrossRef] [PubMed]; Johnstone, C., Rich, S.E., Bleeding in cancer patients and its treatment: A review (2018) Ann. Palliat. Med, 7, pp. 265-273. , [CrossRef] [PubMed]; Crist, M., Hansen, E., Chablani, L., Guancial, E., Examining the bleeding incidences associated with targeted therapies used in metastatic renal cell carcinoma (2017) Crit. Rev. Oncol. Hematol, 120, pp. 151-162. , [CrossRef] [PubMed]; Falanga, A., Marchetti, M., Vignoli, A., Coagulation and cancer: Biological and clinical aspects (2013) J. Thromb. Haemost, 11, pp. 223-233. , [CrossRef]; Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., Zhou, Q., Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2 (2020) Science, , [CrossRef]; Zhang, H., Penninger, J.M., Li, Y., Zhong, N., Slutsky, A.S., Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target (2020) Intensiv. Care Med, , [CrossRef]; Zou, X., Chen, K., Zou, J., Han, P., Hao, J., Han, Z., Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection (2020) Front. Med, , [CrossRef]; Diaz, J.H., Hypothesis: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19 (2020) J. Travel Med, 27, p. taaa041. , [CrossRef] [PubMed]; Gurwitz, D., Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics (2020) Drug Dev. Res, , [CrossRef] [PubMed]; Cai, G., Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov (2020) medRxiv, , [CrossRef]; Shoemaker, R., Tannock, L.R., Su, W., Gong, M., Gurley, S.B., Thatcher, S.E., Yiannikouris, F., Cassis, L.A., Adipocyte deficiency of ACE2 increases systolic blood pressures of obese female C57BL/6 mice (2019) Biol. Sex Differ, 10, p. 45. , [CrossRef]; Simonnet, A., Chetboun, M., Poissy, J., Raverdy, V., Noulette, J., Duhamel, A., Labreuche, J., Jourdain, M., High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation (2020) Obesity, , [CrossRef]; Fang, L., Karakiulakis, G., Roth, M., Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? (2020) Lancet Respir. Med, , [CrossRef]; Yang, M., Meng, F., Wang, K., Gao, M., Lu, R., Li, M., Zhao, F., Cheng, G., Interleukin 17A as a good predictor of the severity of Mycoplasma pneumoniae pneumonia in children (2017) Sci Rep, 7, p. 12934. , [CrossRef]; Quagliariello, V., Passariello, M., Coppola, C., Rea, D., Barbieri, A., Scherillo, M., Monti, M.G., Ascierto, P.A., Cardiotoxicity and pro-inflammatory effects of the immune checkpoint inhibitor Pembrolizumab associated to Trastuzumab (2019) Int. J. Cardiol, 292, pp. 171-179. , [CrossRef]; De Luca, G., Cavalli, G., Campochiaro, C., Tresoldi, M., Dagna, L., Myocarditis: An Interleukin-1-Mediated Disease? (2018) Front. Immunol, 9, p. 1335. , [CrossRef]; Glowacka, I., Bertram, S., Müller, M.A., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response (2011) J. Virol, 85, pp. 4122-4134. , [CrossRef]; Bertram, S., Heurich, A., Lavender, H., Gierer, S., Danisch, S., Perin, P., Lucas, J.M., Soilleux, E.J., Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts (2012) PLoS ONE, 7, p. e35876. , [CrossRef] [PubMed]; Knuuttila, M., Mehmood, A., Mäki-Jouppila, J., Intratumoral androgen levels are linked to TMPRSS2-ERG fusion in prostate cancer (2018) Endocr. Relat. Cancer, 25, pp. 807-819. , [CrossRef] [PubMed]; Quagliariello, V., Bonelli, A., Caronna, A., Lombari, M.C., Conforti, G., Libutti, M., Iaffaioli, R.V., Maurea, N., SARS-CoV-2 infection: NLRP3 inflammasome as plausible target to prevent cardiopulmonary complications? (2020) Eur. Rev. Med. Pharmacol. Sci, 24, pp. 9169-9171. , [CrossRef] [PubMed]; Quagliariello, V., Vecchione, R., Coppola, C., Di Cicco, C., De Capua, A., Piscopo, G., Paciello, R., Taglialatela-Scafati, O., Cardioprotective Effects of Nanoemulsions Loaded with Anti-Inflammatory Nutraceuticals against Doxorubicin-Induced Cardiotoxicity (2018) Nutrients, 10. , [CrossRef] [PubMed]; Mele, D., Tocchetti, C.G., Pagliaro, P., Madonna, R., Novo, G., Pepe, A., Zito, C., Spallarossa, P., Pathophysiology of anthracycline cardiotoxicity (2016) J. Cardiovasc. Med, 17, pp. S3-S11. , (Suppl. 1), [CrossRef]; Ridker, P.M., Everett, B.M., Thuren, T., MacFadyen, J.G., Chang, W.H., Ballantyne, C., Fonseca, F., Anker, S.D., Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease (2017) N. Engl. J. Med, 377, pp. 1119-1131. , [CrossRef]; Ridker, P.M., From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream to Identify Novel Targets for Atheroprotection (2016) Circ. Res, 118, pp. 145-156. , [CrossRef]; Pettersson, T., Söderblom, T., Nyberg, P., Riska, H., Linko, L., Klockars, M., Pleural fluid soluble interleukin 2 receptor in rheumatoid arthritis and systemic lupus erythematosus (1994) J. Rheumatol, 21, pp. 1820-1824; Sakamoto, A., Ishizaka, N., Saito, K., Imai, Y., Morita, H., Koike, K., Kohro, T., Nagai, R., Serum levels of IgG4 and soluble interleukin-2 receptor in patients with coronary artery disease (2012) Clin. Chim. Acta, 413, pp. 577-581. , [CrossRef]; Eisner, R.M., Husain, A., Clark, J.I., Case report and brief review: IL-2-induced myocarditis (2004) Cancer Investig, 22, pp. 401-404. , [CrossRef]; Thavendiranathan, P., Verhaert, D., Kendra, K.L., Raman, S.V., Fulminant myocarditis owing to high-dose interleukin-2 therapy for metastatic melanoma (2011) Br. J. Radiol, 84, pp. e99-e102. , [CrossRef] [PubMed]; Li, R., Paul, A., Ko, K.W., Sheldon, M., Rich, B.E., Terashima, T., Dieker, C., Nour, E.A., Interleukin-7 induces recruitment of monocytes/macrophages to endothelium (2012) Eur. Heart J, 33, pp. 3114-3123. , [CrossRef] [PubMed]; Damås, J.K., Waehre, T., Yndestad, A., Otterdal, K., Hognestad, A., Solum, N.O., Gullestad, L., Aukrust, P., Interleukin-7-mediated inflammation in unstable angina: Possible role of chemokines and platelets (2003) Circulation, 107, pp. 2670-2676. , [CrossRef] [PubMed]; Kumari, N., Dwarakanath, B.S., Das, A., Bhatt, A.N., Role of interleukin-6 in cancer progression and therapeutic resistance (2016) Tumour Biol, 37, pp. 11553-11572. , [CrossRef] [PubMed]; Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies (2012) Lancet, 379, pp. 1205-1213. , IL6R Genetics Consortium Emerging Risk Factors Collaboration. [CrossRef]; Markousis-Mavrogenis, G., Tromp, J., Ouwerkerk, W., Devalaraja, M., Anker, S.D., Cleland, J.G., Dickstein, K., Lang, C.C., The clinical significance of interleukin-6 in heart failure: Results from the BIOSTAT-CHF study (2019) Eur. J. Heart Fail, 21, pp. 965-973. , [CrossRef]; Ikonomidis, I., Papadavid, E., Makavos, G., Andreadou, I., Varoudi, M., Gravanis, K., Theodoropoulos, K., Moutsatsou, P., Lowering Interleukin-12 Activity Improves Myocardial and Vascular Function Compared with Tumor Necrosis Factor-a Antagonism or Cyclosporine in Psoriasis (2017) Circ. Cardiovasc. Imaging, 10, p. e006283. , [CrossRef]; Katsaros, K.M., Speidl, W.S., Demyanets, S., Kastl, S.P., Krychtiuk, K.A., Wonnerth, A., Zorn, G., Maurer, G., G-CSF Predicts Cardiovascular Events in Patients with Stable Coronary Artery Disease (2015) PLoS ONE, 10, p. e0142532. , [CrossRef]; Pourtaji, A., Jahani, V., Moallem, S.M.H., Karimani, A., Mohammadpour, A.H., Application of G-CSF in Congestive Heart Failure Treatment (2019) Curr. Cardiol. Rev, 15, pp. 83-90. , [CrossRef]; Omura, S., Kawai, E., Sato, F., Martinez, N.E., Chaitanya, G.V., Rollyson, P.A., Cvek, U., Tsunoda, I., Bioinformatics multivariate analysis determined a set of phase-specific biomarker candidates in a novel mouse model for viral myocarditis (2014) Circ. Cardiovasc. Genet, 7, pp. 444-454. , [CrossRef]; Niki, T., Soeki, T., Yamaguchi, K., Taketani, Y., Yagi, S., Iwase, T., Yamada, H., Sata, M., Elevated Concentration of Interferon-Inducible Protein of 10 kD (IP-10) Is Associated with Coronary Atherosclerosis (2015) Int. Heart J, 56, pp. 269-272. , [CrossRef] [PubMed]; Antonelli, A., Fallahi, P., Ferrari, S.M., Ghiadoni, L., Virdis, A., Mancusi, C., Centanni, M., Ferrannini, E., High serum levels of CXC (CXCL10) and CC (CCL2) chemokines in untreated essential hypertension (2012) Int. J. Immunopathol. Pharmacol, 25, pp. 387-395. , [CrossRef] [PubMed]; Ayoub, M.A., Zhang, Y., Kelly, R.S., See, H., Johnstone, E.K., McCall, E.A., Williams, J.H., Pfleger, K.D., Functional interaction between angiotensin II receptor type 1 and chemokine (C-C motif) receptor 2 with implications for chronic kidney disease (2015) PLoS ONE, 10, p. e0119803. , [CrossRef] [PubMed]; de Lemos, J.A., Morrow, D.A., Sabatine, M.S., Murphy, S.A., Gibson, C.M., Antman, E.M., McCabe, C.H., Braunwald, E., Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes (2003) Circulation, 107, pp. 690-695. , [CrossRef] [PubMed]; Huang, R., Zhao, S.R., Li, Y., Liu, F., Gong, Y., Xing, J., Xu, Z.S., Association of tumor necrosis factor-α gene polymorphisms and coronary artery disease susceptibility: A systematic review and meta-analysis (2020) BMC Med. Genet, 21, p. 29. , [CrossRef]; Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Gu, X., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study (2020) Lancet, , [CrossRef]; Alehagen, U., Dahlström, U., Lindahl, T.L., Elevated D-dimer level is an independent risk factor for cardiovascular death in out-patients with symptoms compatible with heart failure (2004) Thromb. Haemost, 92, pp. 1250-1258; Martínez-Godínez, M.A., Cruz-Domínguez, M.P., Jara, L.J., Expression of NLRP3 inflammasome, cytokines and vascular mediators in the skin of systemic sclerosis patients (2015) Isr. Med. Assoc. J, 17, pp. 5-10; Grebe, A., Hoss, F., Latz, E., NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis (2018) Circ. Res, 122, pp. 1722-1740. , [CrossRef]; Ravi Kumar, S., Paudel, S., Ghimire, L., Bergeron, S., Cai, S., Zemans, R.L., Downey, G.P., Jeyaseelan, S., Emerging Roles of Inflammasomes in Acute Pneumonia (2018) Am. J. Respir. Crit. Care Med, 197, pp. 160-171. , [CrossRef]; Rodriguez, A.E., Bogart, C., Gilbert, C.M., McCullers, J.A., Smith, A.M., Enhanced IL-1β production is mediated by a TLR2-MYD88-NLRP3 signaling axis during coinfection with influenza A virus and Streptococcus pneumoniae (2019) PLoS ONE, 14, p. e0212236. , [CrossRef] [PubMed]; Sánchez-Fernández, A., Skouras, D.B., Dinarello, C.A., López-Vales, R., OLT1177 (Dapansutrile), a Selective NLRP3 Inflammasome Inhibitor, Ameliorates Experimental Autoimmune Encephalomyelitis Pathogenesis (2019) Front. Immunol, 10, p. 2578. , [CrossRef] [PubMed]; Marchetti, C., Swartzwelter, B., Koenders, M.I., NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis (2018) Arthritis Res. Ther, 20, p. 169. , [CrossRef] [PubMed]; Toldo, S., Abbate, A., The NLRP3 inflammasome in acute myocardial infarction (2018) Nat. Rev. Cardiol, 15, pp. 203-214. , [CrossRef] [PubMed]; Luo, P., Liu, Y., Qiu, L., Liu, X., Liu, D., Li, J., Tocilizumab treatment in COVID-19: A single center experience (2020) J. Med. Virol, , [CrossRef]; Xu, X., Han, M., Li, T., Effective treatment of severe COVID-19 patients with tocilizumab (2020) Proc. Natl. Acad. Sci. USA, 117, pp. 10970-10975. , [CrossRef]; Jia, H., Liu, J., Han, B., Reviews of Interleukin-37: Functions, Receptors, and Roles in Diseases (2018) Biomed. Res. Int, 2018, p. 3058640. , [CrossRef]; Zhan, Q., Zeng, Q., Song, R., Zhai, Y., Xu, D., Fullerton, D.A., Dinarello, C.A., Meng, X., IL-37 suppresses MyD88-mediated inflammatory responses in human aortic valve interstitial cells (2017) Mol. Med, 23, pp. 83-91. , [CrossRef]; Allam, G., Gaber, A.M., Othman, S.I., Abdel-Moneim, A., The potential role of interleukin-37 in infectious diseases (2020) Int. Rev. Immunol, 39, pp. 3-10. , [CrossRef]; An, B., Liu, X., Li, G., Yuan, H., Interleukin-37 Ameliorates Coxsackievirus B3-induced Viral Myocarditis by Modulating the Th17/Regulatory T cell Immune Response (2017) J. Cardiovasc. Pharmacol, 69, pp. 305-313. , [CrossRef]; A Trial of Remdesivir in Adults With Severe COVID-19, , https://clinicaltrials.gov/ct2/show/NCT04257656, ClinicalTrials.gov. (accessed on 17 March 2020); Sakabe, M., Yoshioka, R., Fujiki, A., Sick sinus syndrome induced by interferon and ribavirin therapy in a patient with chronic hepatitis C (2013) J. Cardiol. Cases, 8, pp. 173-175. , [CrossRef] [PubMed]; Yarza, R., Bover, M., Paredes, D., López-López, F., Jara-Casas, D., Castelo-Loureiro, A., Baena, J., Meléndez-Carmona, M.Á., SARS-CoV-2 infection in cancer patients undergoing active treatment: Analysis of clinical features and predictive factors for severe respiratory failure and death (2020) Eur. J. Cancer, 135, pp. 242-250. , [CrossRef] [PubMed]; Baden, L.R., Swaminathan, S., Angarone, M., Blouin, G., Camins, B.C., Casper, C., Cooper, B., Freifeld, A.G., Prevention and Treatment of Cancer-Related Infections, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology (2016) J. Natl. Compr. Cancer Netw, 14, pp. 882-913. , [CrossRef] [PubMed]; López-Sendón, J., Álvarez-Ortega, C., Zamora Auñon, P., Buño Soto, A., Lyon, A.R., Farmakis, D., Cardinale, D., Rodríguez Rodríguez, I., Classification, prevalence, and outcomes of anticancer therapy-induced cardiotoxicity: The CARDIOTOX registry (2020) Eur Heart J, , [CrossRef]; Li, T., Wei, S., Shi, Y., Pang, S., Qin, Q., Yin, J., Deng, Y., Nie, S., The dose-response effect of physical activity on cancer mortality: Findings from 71 prospective cohort studies (2016) Br. J. Sports Med, 50, pp. 339-345. , [CrossRef]; Scott, J.M., Nilsen, T.S., Gupta, D., Jones, L.W., Exercise Therapy and Cardiovascular Toxicity in Cancer (2018) Circulation, 137, pp. 1176-1191. , [CrossRef]; (2007) Research Second Expert Report—Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective WCRF/AICR, , World Cancer Research Fund/American Institute for Cancer. World Cancer Research Fund/American Institute for Cancer: Washington, DC, USA; Solans, M., Chan, D.S.M., Mitrou, P., Norat, T., Romaguera, D., A systematic review and meta-analysis of the 2007 WCRF/AICR score in relation to cancer-related health outcomes (2020) Ann. Oncol, 31, pp. 352-368. , [CrossRef]; Lohse, T., Faeh, D., Bopp, M., Rohrmann, S., Swiss National Cohort Study Group.Adherence to the cancer prevention recommendations of the World Cancer Research Fund/American Institute for Cancer Research and mortality: A census-linked cohort (2016) Am. J. Clin. Nutr, 104, pp. 678-685. , [CrossRef]; Inoue-Choi, M., Robien, K., Lazovich, D., Adherence to the WCRF/AICR guidelines for cancer prevention is associated with lower mortality among older female cancer survivors (2013) Cancer Epidemiol. Biomark. Prev, 22, pp. 792-802. , [CrossRef]; Grafetstätter, M., Pletsch-Borba, L., Sookthai, D., Karavasiloglou, N., Johnson, T., Katzke, V.A., Hoffmeister, M., Kühn, T., Thrombomodulin and Thrombopoietin, Two Biomarkers of Hemostasis, Are Positively Associated with Adherence to the World Cancer Research Fund/American Institute for Cancer Research Recommendations for Cancer Prevention in a Population-Based Cross-Sectional Study (2019) Nutrients, 11, p. 2067. , [CrossRef]; Park, Y., Subar, A.F., Hollenbeck, A., Schatzkin, A., Dietary fiber intake and mortality in the NIH-AARP diet and health study (2011) Arch. Intern. Med, 171, pp. 1061-1068. , [CrossRef] [PubMed]; Wolk, A., Manson, J.E., Stampfer, M.J., Colditz, G.A., Hu, F.B., Speizer, F.E., Hennekens, C.H., Willett, W.C., Long-term intake of dietary fiber and decreased risk of coronary heart disease among women (1999) JAMA, 281, pp. 1998-2004. , [CrossRef] [PubMed]; Gilchrist, S.C., Barac, A., Ades, P.A., Alfano, C.M., Franklin, B.A., Jones, L.W., La Gerche, A., Madan, K., American Heart Association Exercise, Cardiac Rehabilitation, and Secondary Prevention Committee of the Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; and Council on Peripheral Vascular Disease. Cardio-Oncology Rehabilitation to Manage Cardiovascular Outcomes in Cancer Patients and Survivors: A scientific statement from the American Heart Association (2019) Circulation, 139, pp. e997-e1012. , [PubMed]; Ceriello, A., Hyperglycemia and the worse prognosis of COVID-19. Why a fast blood glucose control should be mandatory (2020) Diabetes Res. Clin. Pract, 163, p. 108186. , [CrossRef] [PubMed]
PY - 2020
Y1 - 2020
N2 - The coronavirus disease-2019 (COVID-19) is a highly transmissible viral illness caused by SARS-CoV-2, which has been defined by the World Health Organization as a pandemic, considering its remarkable transmission speed worldwide. SARS-CoV-2 interacts with angiotensin-converting enzyme 2 and TMPRSS2, which is a serine protease both expressed in lungs, the gastro-intestinal tract, and cardiac myocytes. Patients with COVID-19 experienced adverse cardiac events (hypertension, venous thromboembolism, arrhythmia, myocardial injury, fulminant myocarditis), and patients with previous cardiovascular disease have a higher risk of death. Cancer patients are extremely vulnerable with a high risk of viral infection and more negative prognosis than healthy people, and the magnitude of effects depends on the type of cancer, recent chemotherapy, radiotherapy, or surgery and other concomitant comorbidities (diabetes, cardiovascular diseases, metabolic syndrome). Patients with active cancer or those treated with cardiotoxic therapies may have heart damages exacerbated by SARS-CoV-2 infection than non-cancer patients. We highlight the cardiovascular side effects of COVID-19 focusing on the main outcomes in cancer patients in updated perspective and retrospective studies. We focus on the main cardio-metabolic risk factors in non-cancer and cancer patients and provide recommendations aimed to reduce cardiovascular events, morbidity, and mortality. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
AB - The coronavirus disease-2019 (COVID-19) is a highly transmissible viral illness caused by SARS-CoV-2, which has been defined by the World Health Organization as a pandemic, considering its remarkable transmission speed worldwide. SARS-CoV-2 interacts with angiotensin-converting enzyme 2 and TMPRSS2, which is a serine protease both expressed in lungs, the gastro-intestinal tract, and cardiac myocytes. Patients with COVID-19 experienced adverse cardiac events (hypertension, venous thromboembolism, arrhythmia, myocardial injury, fulminant myocarditis), and patients with previous cardiovascular disease have a higher risk of death. Cancer patients are extremely vulnerable with a high risk of viral infection and more negative prognosis than healthy people, and the magnitude of effects depends on the type of cancer, recent chemotherapy, radiotherapy, or surgery and other concomitant comorbidities (diabetes, cardiovascular diseases, metabolic syndrome). Patients with active cancer or those treated with cardiotoxic therapies may have heart damages exacerbated by SARS-CoV-2 infection than non-cancer patients. We highlight the cardiovascular side effects of COVID-19 focusing on the main outcomes in cancer patients in updated perspective and retrospective studies. We focus on the main cardio-metabolic risk factors in non-cancer and cancer patients and provide recommendations aimed to reduce cardiovascular events, morbidity, and mortality. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
KW - Cardioncology
KW - Cardiovascular diseases
KW - COVID-19
KW - Cytokines
KW - Inflammation
KW - Myocardial injury
U2 - 10.3390/cancers12113316
DO - 10.3390/cancers12113316
M3 - Article
VL - 12
SP - 1
EP - 25
JO - Cancers
JF - Cancers
SN - 2072-6694
IS - 11
M1 - 3316
ER -