Segmental spinal dysgenesis: Neuroradiologic findings with clinical and embryologic correlation

Paolo Tortori-Donati, Maria Paola Fondelli, Andrea Rossi, Charles A. Raybaud, Armando Cama, Valeria Capra

Research output: Contribution to journalArticle

Abstract

BACKGROUND AND PURPOSE: Segmental spinal dysgenesis (SSD) is a rare congenital abnormality in which a segment of the spine and spinal cord fails to develop properly. Our goal was to investigate the neuroradiologic features of this condition in order to correlate our findings with the degree of residual spinal cord function, and to provide insight into the embryologic origin of this disorder. We also aimed to clarify the relationship between SSD and other entities, such as multiple vertebral segmentation defects, congenital vertebral displacement, and caudal regression syndrome (CRS). METHODS: The records of patients treated at our institutions for congenital spinal anomalies were reviewed, and 10 cases were found to satisfy the inclusion criteria for SSD. Plain radiographs were available for review in all cases. MR imaging was performed in eight patients, one of whom also underwent conventional myelography. Two other patients underwent only conventional myelography. RESULTS: Segmental vertebral anomalies involved the thoracolumbar, lumbar, or lumbosacral spine. The spinal cord at the level of the abnormality was thinned or even indiscernible, and a bulky, low-lying cord segment was present caudad to the focal abnormality in most cases. Closed spinal dysraphisms were associated in five cases, and partial sacrococcygeal agenesis in three. Renal anomalies were detected in four cases, and dextrocardia in one; all patients had a neurogenic bladder. CONCLUSION: SSD is an autonomous entity with characteristic clinical and neuroradiologic features; however, SSD and CRS probably represent two faces of a single spectrum of segmental malformations of the spine and spinal cord. The neuroradiologic picture depends on the severity of the malformation and on its segmental level along the longitudinal embryonic axis. The severity of the morphologic derangement correlates with residual spinal cord function and with severity of the clinical deficit.

Original languageEnglish
Pages (from-to)445-456
Number of pages12
JournalAmerican Journal of Neuroradiology
Volume20
Issue number3
Publication statusPublished - Mar 1999

Fingerprint

Spinal Cord
Myelography
Spine
Dextrocardia
Neurogenic Urinary Bladder
Kidney

ASJC Scopus subject areas

  • Clinical Neurology
  • Radiology Nuclear Medicine and imaging
  • Radiological and Ultrasound Technology

Cite this

Segmental spinal dysgenesis : Neuroradiologic findings with clinical and embryologic correlation. / Tortori-Donati, Paolo; Fondelli, Maria Paola; Rossi, Andrea; Raybaud, Charles A.; Cama, Armando; Capra, Valeria.

In: American Journal of Neuroradiology, Vol. 20, No. 3, 03.1999, p. 445-456.

Research output: Contribution to journalArticle

@article{d4224e9920a9413fb1a6c74126c0af7a,
title = "Segmental spinal dysgenesis: Neuroradiologic findings with clinical and embryologic correlation",
abstract = "BACKGROUND AND PURPOSE: Segmental spinal dysgenesis (SSD) is a rare congenital abnormality in which a segment of the spine and spinal cord fails to develop properly. Our goal was to investigate the neuroradiologic features of this condition in order to correlate our findings with the degree of residual spinal cord function, and to provide insight into the embryologic origin of this disorder. We also aimed to clarify the relationship between SSD and other entities, such as multiple vertebral segmentation defects, congenital vertebral displacement, and caudal regression syndrome (CRS). METHODS: The records of patients treated at our institutions for congenital spinal anomalies were reviewed, and 10 cases were found to satisfy the inclusion criteria for SSD. Plain radiographs were available for review in all cases. MR imaging was performed in eight patients, one of whom also underwent conventional myelography. Two other patients underwent only conventional myelography. RESULTS: Segmental vertebral anomalies involved the thoracolumbar, lumbar, or lumbosacral spine. The spinal cord at the level of the abnormality was thinned or even indiscernible, and a bulky, low-lying cord segment was present caudad to the focal abnormality in most cases. Closed spinal dysraphisms were associated in five cases, and partial sacrococcygeal agenesis in three. Renal anomalies were detected in four cases, and dextrocardia in one; all patients had a neurogenic bladder. CONCLUSION: SSD is an autonomous entity with characteristic clinical and neuroradiologic features; however, SSD and CRS probably represent two faces of a single spectrum of segmental malformations of the spine and spinal cord. The neuroradiologic picture depends on the severity of the malformation and on its segmental level along the longitudinal embryonic axis. The severity of the morphologic derangement correlates with residual spinal cord function and with severity of the clinical deficit.",
author = "Paolo Tortori-Donati and Fondelli, {Maria Paola} and Andrea Rossi and Raybaud, {Charles A.} and Armando Cama and Valeria Capra",
year = "1999",
month = "3",
language = "English",
volume = "20",
pages = "445--456",
journal = "American Journal of Neuroradiology",
issn = "0195-6108",
publisher = "American Society of Neuroradiology",
number = "3",

}

TY - JOUR

T1 - Segmental spinal dysgenesis

T2 - Neuroradiologic findings with clinical and embryologic correlation

AU - Tortori-Donati, Paolo

AU - Fondelli, Maria Paola

AU - Rossi, Andrea

AU - Raybaud, Charles A.

AU - Cama, Armando

AU - Capra, Valeria

PY - 1999/3

Y1 - 1999/3

N2 - BACKGROUND AND PURPOSE: Segmental spinal dysgenesis (SSD) is a rare congenital abnormality in which a segment of the spine and spinal cord fails to develop properly. Our goal was to investigate the neuroradiologic features of this condition in order to correlate our findings with the degree of residual spinal cord function, and to provide insight into the embryologic origin of this disorder. We also aimed to clarify the relationship between SSD and other entities, such as multiple vertebral segmentation defects, congenital vertebral displacement, and caudal regression syndrome (CRS). METHODS: The records of patients treated at our institutions for congenital spinal anomalies were reviewed, and 10 cases were found to satisfy the inclusion criteria for SSD. Plain radiographs were available for review in all cases. MR imaging was performed in eight patients, one of whom also underwent conventional myelography. Two other patients underwent only conventional myelography. RESULTS: Segmental vertebral anomalies involved the thoracolumbar, lumbar, or lumbosacral spine. The spinal cord at the level of the abnormality was thinned or even indiscernible, and a bulky, low-lying cord segment was present caudad to the focal abnormality in most cases. Closed spinal dysraphisms were associated in five cases, and partial sacrococcygeal agenesis in three. Renal anomalies were detected in four cases, and dextrocardia in one; all patients had a neurogenic bladder. CONCLUSION: SSD is an autonomous entity with characteristic clinical and neuroradiologic features; however, SSD and CRS probably represent two faces of a single spectrum of segmental malformations of the spine and spinal cord. The neuroradiologic picture depends on the severity of the malformation and on its segmental level along the longitudinal embryonic axis. The severity of the morphologic derangement correlates with residual spinal cord function and with severity of the clinical deficit.

AB - BACKGROUND AND PURPOSE: Segmental spinal dysgenesis (SSD) is a rare congenital abnormality in which a segment of the spine and spinal cord fails to develop properly. Our goal was to investigate the neuroradiologic features of this condition in order to correlate our findings with the degree of residual spinal cord function, and to provide insight into the embryologic origin of this disorder. We also aimed to clarify the relationship between SSD and other entities, such as multiple vertebral segmentation defects, congenital vertebral displacement, and caudal regression syndrome (CRS). METHODS: The records of patients treated at our institutions for congenital spinal anomalies were reviewed, and 10 cases were found to satisfy the inclusion criteria for SSD. Plain radiographs were available for review in all cases. MR imaging was performed in eight patients, one of whom also underwent conventional myelography. Two other patients underwent only conventional myelography. RESULTS: Segmental vertebral anomalies involved the thoracolumbar, lumbar, or lumbosacral spine. The spinal cord at the level of the abnormality was thinned or even indiscernible, and a bulky, low-lying cord segment was present caudad to the focal abnormality in most cases. Closed spinal dysraphisms were associated in five cases, and partial sacrococcygeal agenesis in three. Renal anomalies were detected in four cases, and dextrocardia in one; all patients had a neurogenic bladder. CONCLUSION: SSD is an autonomous entity with characteristic clinical and neuroradiologic features; however, SSD and CRS probably represent two faces of a single spectrum of segmental malformations of the spine and spinal cord. The neuroradiologic picture depends on the severity of the malformation and on its segmental level along the longitudinal embryonic axis. The severity of the morphologic derangement correlates with residual spinal cord function and with severity of the clinical deficit.

UR - http://www.scopus.com/inward/record.url?scp=0033366678&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033366678&partnerID=8YFLogxK

M3 - Article

C2 - 10219410

AN - SCOPUS:0033366678

VL - 20

SP - 445

EP - 456

JO - American Journal of Neuroradiology

JF - American Journal of Neuroradiology

SN - 0195-6108

IS - 3

ER -